pytest使用简介 原 荐

栏目: Python · 发布时间: 5年前

内容简介:一个简单的例子:执行结果

安装

pip install pytest

简介

pytest 可以轻松编写测试,支持扩展,并且有丰富的引用和库支持复杂的功能测试

一个简单的例子:

# content of test_sample.py
def inc(x):
    return x + 1


def test_answer():
    assert inc(3) == 5

执行结果

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_sample.py F                                                     [100%]

================================= FAILURES =================================
_______________________________ test_answer ________________________________

    def test_answer():
>       assert inc(3) == 5
E       assert 4 == 5
E        +  where 4 = inc(3)

test_sample.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================

功能特点

  • 失败的语句有详尽的信息 (无需记住 self.assert* names);
  • 自动发现测试的模块和方法(通过模块和功能的命名方式);
  • 使用fixtures用于管理测试资源;
  • 可以兼容 unittest和nose测试组件;
  • Python 2.7, Python 3.4+, PyPy 2.3, Jython 2.5 (未经测试);
  • 丰富的插件资源, 超过315个外部插件和蓬勃发展的社区;
  • 支持参数化
  • 执行测试过程中可以将某些测试跳过,或者对某些预期失败的case标记成失败
  • 支持重复执行失败的case

fixtures

fixtures提供一个固定的基线,可以可靠地重复执行测试。pytest fixture比经典的xUnit的setup/teardown 功能提供了显着的改进:

  • fixtures具有明确的名称,并通过从测试功能,模块,类或整个项目中声明它们的使用来激活。
  • fixtures以模块化方式实现,因为每个fixtures名称触发fixtures方法,该fixtures方法本身可以使用其他fixtures。
  • fixtures管理从简单的单元扩展到复杂的功能测试,允许根据配置和组件选项对fixtures和测试进行参数化,或者在功能,类,模块或整个测试会话范围内重复使用fixtures。

此外,pytes也支持经典的 xunit风格 。您可以根据需要混合使用两种样式,逐步从经典样式移动到新样式。您也可以从现有的unittest.TestCase样式或基于nose的项目开始。

xunit风格:

setUpClass/tearDownClass
setUpModule/tearDownModule

拓展作用域:

  • 模块级(setup_module/teardown_module)开始于模块始末,全局的
  • 函数级(setup_function/teardown_function)只对函数用例生效(不在类中)
  • 类级(setup_class/teardown_class)只在类中前后运行一次(在类中)
  • 方法级(setup_method/teardown_method)开始于方法始末(在类中)
  • 类里面的(setup/teardown)运行在调用方法的前后

fixtures作为函数参数

让我们看一个简单的独立测试模块,它包含一个fixture和一个使用它的测试函数

# content of ./test_smtpsimple.py
import pytest

@pytest.fixture
def smtp_connection():
    import smtplib
    return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

def test_ehlo(smtp_connection):
    response, msg = smtp_connection.ehlo()
    assert response == 250
    assert 0 # for demo purposes

在这里, test_ehlo 需要 smtp_connectio的返回值。pytest发现并调用 @pytest.fixture 标记的 smtp_connection fixture函数。运行测试如下所示:

$ pytest test_smtpsimple.py
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item

test_smtpsimple.py F                                                 [100%]

================================= FAILURES =================================
________________________________ test_ehlo _________________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

    def test_ehlo(smtp_connection):
        response, msg = smtp_connection.ehlo()
        assert response == 250
>       assert 0 # for demo purposes
E       assert 0

test_smtpsimple.py:11: AssertionError
========================= 1 failed in 0.12 seconds =========================

pytest 调用执行过程如下:

  1. pytest 发现了test_ehlo函数,因为以test_前缀。test_ehlo需要一个名为smtp_connection的函数参数。通过查找名为标记fixture的函数来发现匹配smtp_connection函数
  2. smtp_connection() 被调用来创建一个实例
  3. test_ehlo(<smtp_connection instance>) 被调用

共享fixture功能

如果在实施测试期间您意识到要使用多个测试文件中的fixture功能,则可以将其移动到conftest.py文件中。您不需要导入要在测试中使用的夹具,它会自动被pytest发现。

下面这个示例将fixture函数放入单独的 conftest.py 文件中,以便来自目录中多个测试模块的测试可以访问fixture函数

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection():
    return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

这个fixture的名字是smtp_connection,可以在任何测试文件(conftest.py所在目录中下的)将名称列为输入参数来访问:

# content of test_module.py

def test_ehlo(smtp_connection):
    response, msg = smtp_connection.ehlo()
    assert response == 250
    assert b"smtp.gmail.com" in msg
    assert 0  # for demo purposes

def test_noop(smtp_connection):
    response, msg = smtp_connection.noop()
    assert response == 250
    assert 0  # for demo purposes

fixture作用域

@pytest.fixture(scope="module")使用scope控制fixture的作用域,function,class,module,package,session。

变量名称 作用范围 xunit风格对比
function 开始于方法始末(在类中)默认 setup_method
class 只在类中前后运行一次,每一个类调用一次,一个类可以有多个方法 setup_class
module 开始于模块始末,全局的,每一个.py文件调用一次,该文件内又有多个function和class setup_module
package 在pytest 3.7中引入了package范围,目前还属于测试阶段
session 是多个文件调用一次,可以跨.py文件调用,每个.py文件就是module

fixture的teardown 代码

用xunit风格的的代码setup和teardown都是成对出现的,pytest除了兼容这种模式外,pytest还支持fixture特定的终结代码的执行。通过使用 yield 语句而不是 returnyield 语句之后的所有代码都用作teardown代码:

# content of conftest.py

import smtplib
import pytest


@pytest.fixture(scope="module")
def smtp_connection():
    smtp_connection = smtplib.SMTP("smtp.gmail.com", 587, timeout=5)
    yield smtp_connection  # provide the fixture value
    print("teardown smtp")
    smtp_connection.close()

当模块中的最后一次测试已经完成,无论测试的情况如何的语句smtp_connection.close()将被执行

让我们执行:

$ pytest -s -q --tb=no
FFteardown smtp

2 failed in 0.12 seconds

请注意,如果我们使用 scope='function' 夹具设置fixture修饰的方法,则每次单独测试都会进行清理

我们也可以使用 yield 语法 with 的语句

# content of test_yield2.py

import smtplib
import pytest


@pytest.fixture(scope="module")
def smtp_connection():
    with smtplib.SMTP("smtp.gmail.com", 587, timeout=5) as smtp_connection:
        yield smtp_connection  # provide the fixture value

yield关键字是在 python 语法生成器使用,用来节省内存

参数化

fixture参数化

当fixture方法被多次调用,并且每次执行一组相同的测试,在这种情况下,可以对fixture方法进行参数化。

扩展前面的示例,我们可以通过标记fixture的方法创建两个 smtp_connection 实例。fixture函数通过request对象访问每个参数:

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module",
                params=["smtp.gmail.com", "mail.python.org"])
def smtp_connection(request):
    smtp_connection = smtplib.SMTP(request.param, 587, timeout=5)
    yield smtp_connection
    print("finalizing %s" % smtp_connection)
    smtp_connection.close()

运行测试:

$ pytest -q test_module.py
FFFF                                                                 [100%]
================================= FAILURES =================================
________________________ test_ehlo[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

    def test_ehlo(smtp_connection):
        response, msg = smtp_connection.ehlo()
        assert response == 250
        assert b"smtp.gmail.com" in msg
>       assert 0  # for demo purposes
E       assert 0

test_module.py:6: AssertionError
________________________ test_noop[smtp.gmail.com] _________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

    def test_noop(smtp_connection):
        response, msg = smtp_connection.noop()
        assert response == 250
>       assert 0  # for demo purposes
E       assert 0

test_module.py:11: AssertionError
________________________ test_ehlo[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

    def test_ehlo(smtp_connection):
        response, msg = smtp_connection.ehlo()
        assert response == 250
>       assert b"smtp.gmail.com" in msg
E       AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nPIPELINING\nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-MD5\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8\nCHUNKING'

test_module.py:5: AssertionError
-------------------------- Captured stdout setup ---------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
________________________ test_noop[mail.python.org] ________________________

smtp_connection = <smtplib.SMTP object at 0xdeadbeef>

    def test_noop(smtp_connection):
        response, msg = smtp_connection.noop()
        assert response == 250
>       assert 0  # for demo purposes
E       assert 0

test_module.py:11: AssertionError
------------------------- Captured stdout teardown -------------------------
finalizing <smtplib.SMTP object at 0xdeadbeef>
4 failed in 0.12 seconds

我们看到两个测试函数分别针对不同的smtp_connection实例运行了两次

测试函数参数

内置的pytest.mark.parametrize装饰器支持测试函数的参数的参数化。以下是测试函数的典型示例,该函数实现检查某个输入是否导致预期输出:

# content of test_expectation.py
import pytest


@pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
def test_eval(test_input, expected):
    assert eval(test_input) == expected

次使用它们运行三次:

$ pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-4.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 3 items

test_expectation.py ..F                                              [100%]

================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________

test_input = '6*9', expected = 42

    @pytest.mark.parametrize("test_input,expected", [("3+5", 8), ("2+4", 6), ("6*9", 42)])
    def test_eval(test_input, expected):
>       assert eval(test_input) == expected
E       AssertionError: assert 54 == 42
E        +  where 54 = eval('6*9')

test_expectation.py:6: AssertionError
==================== 1 failed, 2 passed in 0.12 seconds ====================

调用fixture的方式

# content of conftest.py
import pytest
import smtplib

@pytest.fixture(scope="module")
def smtp_connection():
    return smtplib.SMTP("smtp.gmail.com", 587, timeout=5)

在方法中可以直接使用fixture标识的函数名调用:

# content of test_module.py

def test_ehlo(smtp_connection):
    response, msg = smtp_connection.ehlo()
    assert response == 250
    assert b"smtp.gmail.com" in msg
    assert 0  # for demo purposes

也可以用声明装饰器@pytest.mark.usefixtures调用

# content of test_module.py

@pytest.mark.usefixtures("smtp_connection")
def test_ehlo():
    response, msg = smtp_connection.ehlo()
    assert response == 250
    assert b"smtp.gmail.com" in msg
    assert 0  # for demo purposes

当装饰器@pytest.mark.usefixtures作用于类的时,如果这个 @pytest.fixture的scope=function,那么类中的每个测试方法都会调用这个fixture。

@pytest.fixture(scope="module", autouse=True),参数autouse, 默认设置为False。 当默认为False,就可以选择用上面两种方式来试用fixture。 当设置为True时,在一个session内的所有的test都会自动调用这个fixture。 所以用该功能时也要谨慎小心

pytest常用插件

pip install pytest-html #轻量级的测试报告
pytest '文件' --html=report.html
pip install pytest-sugar # 打印进度
pip install pytest-rerunfailures # 失败重试
pip install pytest-ordering # 执行顺序
pip install pytest-allure-adaptor #测试报告的升级版,功能完备,界面酷炫

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Web Services原理与研发实践

Web Services原理与研发实践

顾宁刘家茂柴晓路 / 机械工业出版社 / 2006-1 / 33.00元

本书以web services技术原理为主线,详细解释、分析包括XML、XML Schema、SOAP、WSDL、UDDI等在内在的web Services核心技术。在分析、阐述技术原理的同时,结合作者在Web Services领域的最新研究成果,使用大量的实例帮助读者深刻理解技术的设计思路与原则。全书共有9章,第1章主要介绍web Services的背景知识;第2-7章着重讲解webServic......一起来看看 《Web Services原理与研发实践》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具