躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

栏目: Python · 发布时间: 5年前

内容简介:当今社会,速度已经深入人心了,“快”成了大家默认的办事境界,看机器上一件件飞一般传递着的产品,听办公室一族打电话时那种无人能及的语速......休闲的概念已日渐模糊,大家似乎都变成了在“快咒”控制下的小人儿,似乎连腾出点时间来松口气的时间都没有了,看得见的、看不见的规则约束着我们;有形的、无形的的鞭子驱赶着我们,我们马不停蹄追求事业、爱情、地位、财富,似乎自己慢一拍,就会被这个世界抛弃工作仅仅是生活的一部分,千万不要忽略了其他乐趣,人生本是一幅美丽的风景画,不必对所有的事情都抱有强烈的目的性,人的一生总有做

当今社会,速度已经深入人心了,“快”成了大家默认的办事境界,看机器上一件件飞一般传递着的产品,听办公室一族打电话时那种无人能及的语速......休闲的概念已日渐模糊,大家似乎都变成了在“快咒”控制下的小人儿,似乎连腾出点时间来松口气的时间都没有了,看得见的、看不见的规则约束着我们;有形的、无形的的鞭子驱赶着我们,我们马不停蹄追求事业、爱情、地位、财富,似乎自己慢一拍,就会被这个世界抛弃

工作仅仅是生活的一部分,千万不要忽略了其他乐趣,人生本是一幅美丽的风景画,不必对所有的事情都抱有强烈的目的性,人的一生总有做不完的事情,只要我们有一个平和之心,就不会错过沿途风景。

一个阳光明媚的早晨,手拿一杯咖啡,翻开一本喜欢的书,也不失为一种人生乐趣,作为IT一族,我们不能只是局限于IT类的数据,要广大自己的视野,提升自己的内在,今天这篇文章我们会给你推荐几本不错的文学书籍,大家一起来看下。

作为一名程序猿,我们不用为该读什么书发愁,因为我们有python,一个号称除了生孩子,什么都可以做的语言。下面进入正题。

本文大概涉及两个方法:

1.书籍信息爬取

​ 1.1 requests 抓取网页

​ 1.2 BeautifulSoup ,re正则分析网页结构

2.信息分析

​ 2.1 pandas 处理文件

​ 2.2 pyecharts 可视化分析

1.网页抓取

目标URL : book.douban.com/tag/文学?star… 注意start=0,网页的offset是20,后面代码里有体现

我们还是用requests 库来抓取网页信息,下面说下requests 库大致用法

1.常用方法

​ requests.get()

​ requests.post()

​ requests.put()

​ requests.delete()

2.参数

method  提交方式(一般就是get ,post)
        url     提交地址
        params  GET请求中在URL中传递的参数,如http://xxxx?parameter=xxx 这种方式
        data:    在请求体里传递的数据        
      	json     在请求体里传递的数据         
        headers   请求头(一般可以放入Cookie,Referer,User-Agent)
        cookies  Cookies
        files    上传文件       
        auth     headers中加入加密的用户名和密码,是另一种身份验证方法,账号密码在请求时候传过去直接验证,				 这种方式用的比较少        
        timeout  请求和响应的超时时间         
        allow_redirects  是否允许重定向    
        proxies  代理        
        verify   是否忽略证书         
        cert     证书文件        
        stream   一部分一部分的获取数据,不用一次性获取数据,放入内存     
        session: 用于保存客户端历史访问信息
                      
复制代码

下面正式开始抓取网页信息

#伪装浏览器请求,User-Agent和Cookie 可以用你自己的,怎么取看下面的图
headers = {
'User-Agent': '*******',
'Cookie': '*******'
}


res = requests.get(url,headers=headers,timeout =20) # 获取网页信息,timeout要设置,不然可能因为超时导致抓取信息失败
# print(res.status_code,res.apparent_encoding,res.content,res.encoding) #response响应的一些信息
res.encoding = res.apparent_encoding #设置请求头的编码
response = res.text #获取网页的内容
复制代码

右击网页----->检查------->network------->按F5刷新网页 就会出现下面的界面(我用的Chrome浏览器)

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

经过上面的几行代码,我能就可以抓取页面的内容了

2.分析网页,抓取数据

这次我们要抓取的信息包括:

书名,链接,作者,出版社,出版日期,价格,评分,评论数,评论内容
复制代码

我们下面看看怎么获取信息

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

我们可以选择我们想要抓取的信息,下面显示在 div class='article' 这个标签下,到这里先别急写代码,我们可以继续往下看几层,是不是可以搜小我们选择的范围

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)
躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

我们向下看了几层,发现其实我们想要的数据都在 li class = "subject-item" 这样的标签下,下面我们就可以用BeautifulSoup来分析了

#用lxml方法来解析网页,默认是html.parse
soup = BeautifulSoup(response,'lxml')

#找到所有<li class = "subject-item">这样的标签,注意find_all方法返回的是list类型,下面使用的时候要用for循环,find是只找到第一个符合条件的标签,返回的是bs4.element类型,可以直接调用方法
artiche = soup.find_all('li','subject-item')
复制代码

下面分别看下我们想要的数据的具体位置,选择第一个 li class = "subject-item" 标签

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

下面所有要的信息,以及标签我在图上做了标识

下面看代码

#artiche是列表类型,循环操作每个元素
    for item in artiche:
        for i in item.find_all('div','info'): #书名和链接信息
            try:
                if i.find('a').string:  #防止存在没有书名的情况,string是获取a标签的内容
                    book_name = i.find('a').string.strip()  找到第一个a标签
                else:
                    book_name='NULL'
                if  i.find('a').attrs: #获取a标签的的属性
                    book_url = i.find('a').attrs.get('href').strip() #属性时字典方式,用get取数据
                else:
                    book_url =url

                pub_info = i.find('div','pub').string.strip() #出版社信息
                book_info_list = pub_info.split('/')
                #下面都是根据实际情况判断写的内容
                if len(book_info_list)==5:
                    book_auth = book_info_list[0]+','+book_info_list[1]
                    book_publish = book_info_list[2]
                    book_pub_date = book_info_list[3]
                    book_price = re.findall('\d+',book_info_list[4])[0]
                elif len(book_info_list)==4:
                    book_auth = book_info_list[0]
                    book_publish = book_info_list[1]
                    book_pub_date = book_info_list[2]
                    book_price = re.findall('\d+',book_info_list[3])[0]
                else:
                    book_auth = 'NULL'
                    book_publish = book_info_list[0]
                    book_pub_date = book_info_list[1]
                    book_price = re.findall('\d+', book_info_list[2])[0]
			   #评分
                rating_nums = i.find('span','rating_nums').string
			   #评论数信息
                comment_nums = i.find('span','pl').string.strip()
                comment_nums = re.findall('\d+',comment_nums)
                comment_nums = comment_nums[0]
			  #评论内容
                if i.find('p'):
                    comment_content = i.find('p').string.strip().replace('\n','')
                else:
                    comment_content= 'NULL'

                print(book_name,
                      book_url,book_auth,book_publish,
                      book_pub_date,book_price,rating_nums,
                      comment_nums,comment_content)
复制代码

抓取完信息我们要用pandas的to_csv方法把数据存入csv文件里方便后续分析

data_dict = {}
                data_dict['书名'] = book_name
                data_dict['链接'] = book_url
                data_dict['作者'] = book_auth
                data_dict['出版社'] = book_publish
                data_dict['出版日期'] = book_pub_date
                data_dict['价格'] = book_price
                data_dict['评分'] = rating_nums
                data_dict['评论数'] = comment_nums
                data_dict['评论内容'] = comment_content


                data_list.append(data_dict)
                
                df = pandas.DataFrame(data_list_all)
    		   df.to_csv('book.csv', encoding='utf_8_sig')  # encoding解决乱码问题
复制代码

这样我们的数据抓取就算大功告成了。

3.数据分析

数据分析这段我们使用pyecharts工具,我们大概分析几个方面,自我感觉分析的不是太到位,哈哈,大家主要还是用来学习下怎么使用pyecharts和pandas。

首先我们用pandas分析上面的csv文件,处理下等到我们想要的格式

from pyecharts import Bar,Pie
import pandas as pd

df = pd.read_csv('book.csv')
# print(df.loc[1:10,['书名','评论数']])
dfn = df.dropna(axis=0,subset=['书名'])  #删除书名为空的记录
dfn_comment = dfn.sort_values('评论数',ascending=False).head(20) #根据评论数排序,取前20本书信息
dfn_score = dfn[dfn['评论数']>200000].sort_values('评分',ascending=False).head(20) #根据评分排序,取前20本书信息
# print(dfn['书名'],dfn['评论数'])
# print(dfn.loc[:,['书名','评论数']])

dfn_book_name = dfn_comment['书名'].values.tolist() #把dataframe类型转成list类型
dfn_comment_nums = dfn_comment['评论数'].values.tolist()

dfn_book_name_score = dfn_score['书名'].values.tolist()
dfn_comment_score = dfn_score['评分'].values.tolist()
# print(dfn_book_name,dfn_comment_nums,dfn_comment_score)
# print(type(df),type(dfn))
# print(dfn.dtypes['出版日期']) #打印列类型

#日期类型转换
# dfn['出版日期'] = pd.to_datetime(dfn['出版日期'],errors='coerce') #转换成日期类型
# dfn['出版日期'] = dfn['出版日期'].dt.year #取年份
dfn_pub_date = dfn
dfn_pub_date['出版日期'] = pd.to_datetime(dfn['出版日期'],errors='coerce') #转换成日期类型
dfn_pub_date['出版日期']= dfn['出版日期'].dt.year #取年份

# print(dfn_pub_date)
#根据出版日期年份分组,取出每年出版书籍数量
dfn_n = dfn_pub_date.groupby(['出版日期'],as_index=False)['书名'].size().reset_index(name='count')

#过滤出版数量在10以下的年份
dfn_n = dfn_n[dfn_n['count']>10]
dfn_n_year = dfn_n['出版日期'].values.tolist()
dfn_n_count = dfn_n['count'].values.tolist()


#最多产的出版社
dfn_n_pub = dfn.groupby(['出版社'],as_index=False)['书名'].size().reset_index(name='count')
dfn_n_pub = dfn_n_pub.sort_values('count',ascending=False).head(10)
dfn_n_pub_name = dfn_n_pub['出版社'].values.tolist()
dfn_n_pub_count = dfn_n_pub['count'].values.tolist()
复制代码

1.根据评论数量和评分,分析大家对那些书敢兴趣,评分比较高

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)
躁动不安的年代,你需要读几本好书(python爬虫及数据分析)
bar = Bar("豆瓣文学类图书", "评价数量")
bar.add("评论数排名", dfn_book_name, dfn_comment_nums, is_more_utils=True)
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render('豆瓣文学评论数分析.html')  # 生成本地 HTML 文件
#

bar = Bar("豆瓣文学类图书", "评价数量")
bar.add("评分排名", dfn_book_name_score, dfn_comment_score, is_more_utils=True)
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render('豆瓣文学书籍评分分析.html')  # 生成本地 HTML 文件
复制代码

从上面看的出来,<<风筝的人>>,<<活着>>,<<解忧杂货店>>,<<小王子>>,<<白夜行>>等书,还是值得我们一看的,大家也可以上豆瓣读书上看下,网站自己有个综合排名,感觉和我分析的差不多,有兴趣可以自己看下。

2.各年份出版的书籍数量

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)
pie = Pie("各年份出版书籍数量分布饼图", title_pos='center')
pie.add("", dfn_n_year, dfn_n_count, radius=[40, 75],
    label_text_color=None,
    is_label_show=True,
    legend_orient="vertical",
    legend_pos="left")
# pie.show_config()
pie.render('年份出版书籍数量分布饼图.html')
复制代码

我们看随着时间的推进,人们对书籍的需求也越来越大,从1999-2019,书籍的出版数量呈上升趋势。

3.各大出版的发行书籍数据占比

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)
pie = Pie("各出版社出版书籍数量分布饼图", title_pos='center')
pie.add("", dfn_n_pub_name, dfn_n_pub_count, radius=[40, 75],
    label_text_color=None,
    is_label_show=True,
    legend_orient="vertical",
    legend_pos="left")
# pie.show_config()
pie.render('各出版社出版书籍数量分布饼图.html')
复制代码

出版社的分析,大家自己看下就行。

最后还是那句话,工作再忙,也要享受片刻的读书时光,减少焦虑。

大家如果有兴趣可以拿的代码自己执行抓取数据,自己做点自己想要知道的分析。

源代码请关注公众号:pythonislover , 回复 "看书", 即可获取。

躁动不安的年代,你需要读几本好书(python爬虫及数据分析)

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

引爆流行

引爆流行

[美] 马尔科姆·格拉德威尔 / 钱清、覃爱冬 / 中信出版社 / 2002-7 / 18.00元

马尔科姆·格拉德威尔以社会上突如其来的流行风潮研究为切入点,从一个全新的角度探索了控制科学和营销模式。他认为,思想、行为、信息以及产品常常会像传染病爆发一样,迅速传播蔓延。正如一个病人就能引起一场全城流感;如果个别工作人员对顾客大打出手,或几位涂鸦爱好者管不住自己,也能在地铁里掀起一场犯罪浪潮;一位满意而归的顾客还能让新开张的餐馆座无虚席。这些现象均属“社会流行潮”,它爆发的那一刻,即达到临界水平......一起来看看 《引爆流行》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试