SA 后缀数组入门 — Luogu P3809 【模板】后缀排序

栏目: 数据库 · 发布时间: 5年前

内容简介:题目链接:后缀数组用于解决各种玄学字符串问题,准确来说,它是一种思想基于后缀数组有很多好玩

题目链接: https://www.luogu.org/problemnew/show/P3809

后缀数组

后缀数组用于解决各种玄学字符串问题,准确来说,它是一种思想

基于后缀数组有很多好玩

毒瘤

的东西

目前已知的求后缀数组的方法有

因为我太菜了,所以我就讲倍增求法

倍增求后缀数组

与其说倍增求后缀数组,倒不如说是 倍增 + 基数 排序 求后缀数组

我们先从归并排序讲起

基数排序

基数排序,用于给形如 $(a, b)$ 的二元组排序($a$ 为第一关键字,$b$ 为第二关键字)

可以做到在近似 $O(n)$ 的复杂度完成

通过灵活的运用基数排序,可以比绝大多数的 排序算法 更加优秀

因此也被用来在快速排序模板中占领效率 rk1

倍增的用处

我们发现如果我们直接暴力求倍增数组,重复的前缀被计算了多次

如果我们一开设长度为 $1$ 字串为一个单位,排完序后设长度为二为一个单位,我们就会发现这个可以基数排序

之后设长度为 $4$ 为一个单位,依然可以基数排序,以此类推,便可以做到后缀排序

这个过程,也就是倍增

倍增 $O(\log(n))$

基数排序 $O(n)$

套起来 $O(n \log(n))$

代码

#include <cstdio>
#include <cstring>

const int N = 1e6 + 1e5;

int len, Max_char;
int sa[N], tp[N], rank[N], rank_cnt[N];
char str[N];
// Max_char 基数排序最大项
// sa[i] 如上文所述
// tp[i] 第二关键字
// rank[ sa[i] ] = i 从第 i 个字母开始的排名
// rand_cnt[i] 统计 rank 的和,基数排序用

// 基数排序
void sort(){
    memset(rank_cnt, 0, sizeof(rank_cnt));
    // 统计 rank_cnt
    for(int i = 1; i <= len; i++)
        rank_cnt[ rank[i] ] ++;
    // 前缀
    for(int i = 1; i <= Max_char; i++)
        rank_cnt[i] += rank_cnt[i - 1];
    // 计算出 sa
    for(int i = len; i > 0; i--)
        sa[ rank_cnt[ rank[ tp[i] ] ] -- ] = tp[i];    
}

void get_sa(){
    Max_char = 'z' - '0' + 2;
    // 长度为 1 的预处理
    for(int i = 1; i <= len; i++){
        rank[i] = str[i] - '0' + 1;
        tp[i] = i;
    }
    sort();
    // 倍增
    for(int l = 1, tmp_cnt; tmp_cnt < len; l <<= 1, Max_char = tmp_cnt){
        tmp_cnt = 0;
        // 处理第二关键字
        for(int i = 1; i <= l; i++)
            tp[ ++ tmp_cnt ] = len - l + i;
        for(int i = 1; i <= len; i++){
            if( sa[i] > l )
                tp[ ++ tmp_cnt ] = sa[i] - l;
        }
        sort();

        memcpy(tp, rank, sizeof(rank));
        rank[ sa[1] ] = tmp_cnt = 1;
        for(int i = 2; i <= len; i++){
            // 判断重复(判断一个二元组)
            rank[ sa[i] ] = ( tp[ sa[i] ] == tp[ sa[i - 1] ] && tp[ sa[i] + l ] == tp[ sa[i - 1] + l ]) ? tmp_cnt: ++ tmp_cnt;
        }
    }
}

int main(){
    scanf("%s", str + 1);
    len = strlen(str + 1);

    get_sa();

    // 输出
    for(int i = 1; i <= len; i++)
        printf("%d ", sa[i]);
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

SEO实战密码

SEO实战密码

昝辉Zac / 电子工业出版社 / 2015-7 / 69.00元

本书是畅销书升级版,详细和系统地介绍了正规、有效的SEO实战技术,包括为什么要做SEO、搜索引擎工作原理、关键词研究、网站结构优化、外部链接建设、SEO效果监测及策略修改,SEO作弊及惩罚、排名因素列表、常用的SEO工具、SEO项目管理中需要注意的问题等专题,最后提供了一个非常详细的案例供读者参考。 第3版增加了移动搜索优化、APP排名优化、百度2015年排名因素调查结果等新内容,并对前两版......一起来看看 《SEO实战密码》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

html转js在线工具
html转js在线工具

html转js在线工具