深度學習世界的魔法陣們

栏目: 数据库 · 发布时间: 5年前

内容简介:剛開始研究 deep learning 時,正好是 AlphaGo 跟南韓棋士李世乭對戰(2016年3月8日到3月15日)的前一兩個月,那時我們小組嘗試用 CNN(卷積神經網絡)來做藝術畫的風格分類,想想也已經是兩年前的事了。上一篇中曾提到 AI 不是新的概念,而深度學習(Deep Learning)也是。深度學習是由加深層數後的多層神經網絡所組成,有一說法是當 Hidden Layer 超過三層的話就稱為 Deep Neural Network。然而,神經網絡早在1943年就由神經科學家 W.S.McCi

剛開始研究 deep learning 時,正好是 AlphaGo 跟南韓棋士李世乭對戰(2016年3月8日到3月15日)的前一兩個月,那時我們小組嘗試用 CNN(卷積神經網絡)來做藝術畫的風格分類,想想也已經是兩年前的事了。

深度學習世界的魔法陣們
Photo by Ståle Grut on  Unsplash

上一篇中曾提到 AI 不是新的概念,而深度學習(Deep Learning)也是。深度學習是由加深層數後的多層神經網絡所組成,有一說法是當 Hidden Layer 超過三層的話就稱為 Deep Neural Network。

然而,神經網絡早在1943年就由神經科學家 W.S.McCilloch 和數學家 W.Pitts 所提出,希望計算機模擬人的神經元反應的過程,但是因為算法、運算能力等侷限性沉寂了好長一段時間,在近年 Big Data 浪潮與計算機運算能力的提升等助力推波助瀾下,讓深度學習重新站上研究的主流位置,各種深度學習的應用如雨後春筍般冒出,大家對這塊領域充滿希望與期待,就像想成為海賊王一般地瘋狂追尋 ONE PIECE。

這篇引領見習魔法使們一覽深度學習中的魔法陣們:

深度學習世界的魔法陣們
http://www.asimovinstitute.org/neural-network-zoo/

沒在開玩笑吧,真的很像魔法陣,看看這些神經元組成的各式網絡結構多美啊!

接下來的系列文章將為各位帶來各式魔法陣的解說,內容涵蓋:

  1. Artificial Neural Network (ANN)
  • [魔法陣系列] Artificial Neural Network (ANN) 之術式解析
  • [魔法陣系列] Artificial Neural Network (ANN) 之術式啟動
  • [實戰系列] 使用TensorFlow搭建一個 ANN 魔法陣(模型)

2. Convolutional Neural Network (CNN)

  • [魔法陣系列] Convolutional Neural Network(CNN)之術式解析
  • [魔法陣系列] 王者誕生:AlexNet 之術式解析
  • [實戰系列] 使用 Keras 搭建一個 CNN 魔法陣(模型)

3. Recurrent Neural Network (RNN)

  • [魔法陣系列] Recurrent Neural Network(RNN)之術式解析
  • [實戰系列] 使用 Keras 搭建一個 LSTM 魔法陣(模型)

4. AutoEncoder

  • [魔法陣系列] AutoEncoder 之術式解析
  • [實戰系列] 使用 Keras 搭建一個 Denoising AE 魔法陣(模型)
  • [魔法陣系列] AutoEncoder 之應用場景

5. Generative Adversarial Network (GAN)

  • [魔法陣系列] Generative Adversarial Network(GAN)之術式解析
  • [魔法陣系列] Generative Adversarial Network(GAN)之應用場景
  • [實戰系列] 使用 Keras 搭建一個 GAN 魔法陣(模型)

6. Deep Q Network(DQN)

  • [魔法陣系列] Deep Q Network(DQN)之術式解析
  • [實戰系列] 使用 Keras 搭建一個 DQN 魔法陣(模型)

7. 精進魔法系列

  • [精進魔法] Regularization:減少 Overfitting ,提高模型泛化能力
  • [精進魔法] Optimization:優化深度學習模型的技巧(上)
  • [精進魔法] Optimization:優化深度學習模型的技巧(中)- Adaptive Learning Rates
  • [精進魔法] Optimization:優化深度學習模型的技巧(下)- Batch Normalization
  • [魔王出沒] 深度學習中的魔王軍簡介

8. 魔法小報系列

  • [魔法小報] 深度學習 vs. 傳統機器學習
  • [魔法小報] 機器學習路上的強力支援們(網路學習資源推薦)
  • [魔法小報] Attention 機制的引進
  • [魔法小報] 用圖表呈現深度學習的商業應用價值
  • [魔法小報] 深度學習在電腦視覺(Computer Vision)的技術與應用
  • [魔法小報] 深度學習在自然語言處理(NLP)的技術與應用
  • [魔法小報] 深度學習在聊天機器人(Chatbot)的技術與應用

9. 前言與絮語

除了解說各魔法陣的原理之外,也會額外撰寫搭配的運用情境,請各位見習魔法使們敬請期待!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

渐进增强的Web设计

渐进增强的Web设计

[美] Todd Parker、[英] Patty Toland、[英] Scott Jehl、[法] Maggie Costello Wachs / 牛化成 / 人民邮电出版社 / 2014-1 / 69.00

本书由全球著名Web设计公司Filament集团两位创始人和两位开发主力联手打造,其中Scott Jehl还是jQuery团队成员。四位作者具有多年的网站设计和开发经验,曾为网站、无线设备、Web应用设计过众多高度实用的用户界面,受到了高度赞扬。本书展示了如何利用渐进增强方法开发网站,从而获得最佳用户体验。本书既是理解渐进增强原则和益处的实用指南,也用详细的案例分析,目的是向设计师以及开发人员传授......一起来看看 《渐进增强的Web设计》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具