内容简介:CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。Ø 服务器配置
CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。
一、评测环境
1)网络拓扑图
2)配置参数
Ø 服务器配置
二、性能对比
目前主流hadoop的文件存储格式有行存储的CSV格式,列式存储的ORC和Parquet等。本章给出的是Parquet+Spark和CarbonData+Spark在过滤查询场景和聚合计算场景的性能测试结果。
1)测试数据
创建沈阳社保的数据仓库,导入、集成1年的测试数据,如下表:
生成CarbonData格式文件,如下表:
2)过滤查询场景测试
Parquet和CarbonData在过滤查询场景下的性能对比
3)聚合计算场景测试
Parquet和CarbonData在聚合计算场景下的性能对比
4)总结分析
在过滤查询中,CarbonData的查询效率比parquet效率好,主要体现在列数据的索引查询,极大地提高了精确查询的性能。在聚合查询中,CarbonData通过使用全局字典编码来加快计算速度,这使得处理、查询引擎可以直接在编码好的数据上进行处理而不需要转换数据,数据只有在返回结果给用户的时候才转换成用户可读的形式,通过索引有效过滤文件数据块减少磁盘的IO,提高查询性能。
三、小结
CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 硬件超车无法掩盖生态缺失,软实力构建任重而道远 | 中科曙光高性能计算专访
- 跨链巨星 Polkadot 生态历险 129 个生态资助项目大摸底
- 腾讯 Omi 生态发布
- 初入Hadoop生态系统
- 云原生和技术生态(200509)
- 2020 开发人员生态系统现状
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Web标准和SEO应用实践
Aarron Walter / 李清 / 机械工业出版社 / 2008 / 36.00元
本书是关于搜索引擎优化和易发现性的技术指南。. 本书介绍Web标准、可访问性以及Ajax、API、Flash和微格式等内容,包括标记策略、服务器端策略、内容策略、建构易发现的博客、在网站内添加搜索、防止易发现性障碍、用邮件列表挽回流量、将易发现性付诸实践。 本书适合网站开发者与SEO技术业余爱好者等参考。 这不是为营销专家写的一本SEO的书。 针对那些想要找到网站的目标用户......一起来看看 《Web标准和SEO应用实践》 这本书的介绍吧!