基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

栏目: 编程工具 · 发布时间: 5年前

内容简介:CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。Ø 服务器配置

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。

一、评测环境

1)网络拓扑图

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

2)配置参数

Ø 服务器配置

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

二、性能对比

目前主流hadoop的文件存储格式有行存储的CSV格式,列式存储的ORC和Parquet等。本章给出的是Parquet+Spark和CarbonData+Spark在过滤查询场景和聚合计算场景的性能测试结果。

1)测试数据

创建沈阳社保的数据仓库,导入、集成1年的测试数据,如下表:

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

生成CarbonData格式文件,如下表:

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

2)过滤查询场景测试

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)
基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

Parquet和CarbonData在过滤查询场景下的性能对比

3)聚合计算场景测试

Parquet和CarbonData在聚合计算场景下的性能对比

4)总结分析

在过滤查询中,CarbonData的查询效率比parquet效率好,主要体现在列数据的索引查询,极大地提高了精确查询的性能。在聚合查询中,CarbonData通过使用全局字典编码来加快计算速度,这使得处理、查询引擎可以直接在编码好的数据上进行处理而不需要转换数据,数据只有在返回结果给用户的时候才转换成用户可读的形式,通过索引有效过滤文件数据块减少磁盘的IO,提高查询性能。

基于Hadoop生态系统的一高性能数据存储格式CarbonData(性能篇)

三、小结

CarbonData在数据查询的性能表现比Parquet好很多,在写一次读多次的场景下非常适合使用;社区比较活跃,响应也很及时。目前官网发布版本1.3.0与最新的spark稳定版Spark2.2.1集成,增加了支持标准的Hive分区,支持流数据准实时入库等新特性,相信会有越来越多的项目会使用到。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

因计算机而强大

因计算机而强大

[美]西摩 佩珀特 Seymour Papert / 梁栋 / 新星出版社 / 2019-1 / 38

本书有两个中心主题—— 孩子可以轻松自如地学习使用计算机; 学习使用计算机能够改变他们学习其他知识的方式。 (前苹果公司总裁 约翰·斯卡利) 最有可能带来文化变革的就是计算机的不断普及。 计算机不仅是一个工具,它对我们的心智有着根本和深远的影响。 计算机不仅帮助我们学习 ,还帮助我们学习怎样学习。 计算机是一种调解人与人之间关系的移情对象。 一个数学的头脑......一起来看看 《因计算机而强大》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具