内容简介:java.util.concurrent(J.U.C)大大提高了并发性能,AQS 被认为是 J.U.C 的核心。java的内置锁一直都是备受争议的,在JDK 1.6之前,synchronized这个重量级锁其性能一直都是较为低下,虽然在1.6后,进行大量的锁优化策略,但是与Lock相比synchronized还是存在一些缺陷的:虽然synchronized提供了便捷性的隐式获取锁释放锁机制(基于JVM机制),但是它却缺少了获取锁与释放锁的可操作性,可中断、超时获取锁,且它为独占式在高并发场景下性能大打折扣。
java.util.concurrent(J.U.C)大大提高了并发性能,AQS 被认为是 J.U.C 的核心。
AQS简介
java的内置锁一直都是备受争议的,在JDK 1.6之前,synchronized这个重量级锁其性能一直都是较为低下,虽然在1.6后,进行大量的锁优化策略,但是与Lock相比synchronized还是存在一些缺陷的:虽然synchronized提供了便捷性的隐式获取锁释放锁机制(基于JVM机制),但是它却缺少了获取锁与释放锁的可操作性,可中断、超时获取锁,且它为独占式在高并发场景下性能大打折扣。
在介绍Lock之前,我们需要先熟悉一个非常重要的组件,掌握了该组件JUC包下面很多问题都不在是问题了。该组件就是AQS。
AQS是什么?
AQS:AbstractQueuedSynchronizer,即队列同步器。它是构建锁或者其他同步组件的基础框架(如ReentrantLock、ReentrantReadWriteLock、Semaphore等),JUC并发包的作者(Doug Lea)期望它能够成为实现大部分同步需求的基础。它是JUC并发包中的核心基础组件。
AQS解决了实现同步器时涉及当的大量细节问题,例如获取同步状态、FIFO同步队列。基于AQS来构建同步器可以带来很多好处。它不仅能够极大地减少实现工作,而且也不必处理在多个位置上发生的竞争问题。
工作过程
AQS通过内置的FIFO同步队列来完成资源获取线程的排队工作,如果当前线程获取同步状态失败(锁)时,AQS则会将当前线程以及等待状态等信息构造成一个节点(Node)并将其加入同步队列,同时会阻塞当前线程,当同步状态释放时,则会把节点中的线程唤醒,使其再次尝试获取同步状态。
AQS主要提供了如下一些方法
- getState():返回同步状态的当前值;
- setState(int newState):设置当前同步状态;
- compareAndSetState(int expect, int update):使用CAS设置当前状态,该方法能够保证状态设置的原子性;
- tryAcquire(int arg):独占式获取同步状态,获取同步状态成功后,其他线程需要等待该线程释放同步状态才能获取同步状态
- tryRelease(int arg):独占式释放同步状态;
- tryAcquireShared(int arg):共享式获取同步状态,返回值大于等于0则表示获取成功,否则获取失败;
- tryReleaseShared(int arg):共享式释放同步状态;
- isHeldExclusively():当前同步器是否在独占式模式下被线程占用,一般该方法表示是否被当前线程所独占;
- acquire(int arg):独占式获取同步状态,如果当前线程获取同步状态成功,则由该方法返回,否则,将会进入同步队列等待,该方法将会调用可重写的tryAcquire(int arg)方法;
- acquireInterruptibly(int arg):与acquire(int arg)相同,但是该方法响应中断,当前线程为获取到同步状态而进入到同步队列中,如果当前线程被中断,则该方法会抛出InterruptedException异常并返回;
- tryAcquireNanos(int arg,long nanos):超时获取同步状态,如果当前线程在nanos时间内没有获取到同步状态,那么将会返回false,已经获取则返回true;
- acquireShared(int arg):共享式获取同步状态,如果当前线程未获取到同步状态,将会进入同步队列等待,与独占式的主要区别是在同一时刻可以有多个线程获取到同步状态;
- acquireSharedInterruptibly(int arg):共享式获取同步状态,响应中断;
- tryAcquireSharedNanos(int arg, long nanosTimeout):共享式获取同步状态,增加超时限制;
- release(int arg):独占式释放同步状态,该方法会在释放同步状态之后,将同步队列中第一个节点包含的线程唤醒;
- releaseShared(int arg):共享式释放同步状态;
AQS的原理
在基于AQS构建的同步器中,只能在一个时刻发生阻塞,从而降低上下文切换的开销,提高了吞吐量。同时在设计AQS时充分考虑了可伸缩性,因此J.U.C中所有基于AQS构建的同步器均可以获得这个优势。
AQS的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态。
AQS使用一个int类型的成员变量state来表示同步状态,当state>0时表示已经获取了锁,当state = 0时表示释放了锁。它提供了三个方法(getState()、setState(int newState)、compareAndSetState(int expect,int update))来对同步状态state进行操作,当然AQS可以确保对state的操作是安全的。
定义(源码分析)
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { //等待队列的头节点 private transient volatile Node head; //等待队列的尾节点 private transient volatile Node tail; //同步状态 private volatile int state; protected final int getState() { return state;} protected final void setState(int newState) { state = newState;} ... }复制代码
队列同步器AQS是用来构建锁或其他同步组件的基础框架,内部使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,其中内部状态state,等待队列的头节点head和尾节点head,都是通过volatile修饰,保证了多线程之间的可见。
在深入实现原理之前,我们先看看内部的FIFO队列是如何实现的。
static final class Node { //该等待同步的节点处于共享模式 static final Node SHARED = new Node(); //该等待同步的节点处于独占模式 static final Node EXCLUSIVE = null; static final int CANCELLED = 1; static final int SIGNAL = -1; static final int CONDITION = -2; static final int PROPAGATE = -3; //等待状态,这个和state是不一样的:有1,0,-1,-2,-3五个值 volatile int waitStatus; volatile Node prev;//前驱节点 volatile Node next;//后继节点 volatile Thread thread;//等待锁的线程 Node nextWaiter;//和节点是否共享有关 ... }复制代码
先来一张形象的图
黄色节点是默认head节点,其实是一个空节点,我觉得可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。
每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4种状态:
1. CANCELLED = 1 取消状态
该节点的线程可能由于超时或被中断而处于被取消(作废)状态,一旦处于这个状态,节点状态将一直处于CANCELLED(作废),因此应该从队列中移除.
2. SIGNAL = -1 等待触发状态
当前节点为SIGNAL时,后继节点会被挂起,因此在当前节点释放锁或被取消之后必须被唤醒(unparking)其后继结点.
3. CONDITION = -2 等待条件状态
该节点的线程处于等待条件状态,不会被当作是同步队列上的节点,直到被唤醒(signal),设置其值为0,重新进入阻塞状态.
4. PROPAGATE 状态需要向后传播
等待队列是FIFO先进先出,只有前一个节点的状态为SIGNAL时,当前节点的线程才能被挂起。
实现原理
子类重写tryAcquire和tryRelease方法通过CAS指令修改状态变量state。
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }复制代码
线程获取锁过程
下列步骤中线程A和B进行竞争。
1. 线程A执行CAS执行成功,state值被修改并返回true,线程A继续执行。
2. 线程A执行CAS指令失败,说明线程B也在执行CAS指令且成功,这种情况下线程A会执行步骤3。
3. 生成新Node节点node,并通过CAS指令插入到等待队列的队尾(同一时刻可能会有多个Node节点插入到等待队列中),如果tail节点为空,则将head节点指向一个空节点(代表线程B),具体实现如下:
private Node addWaiter(Node mode) { //把当前线程包装为node,设为独占模式 Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; //如果tail不为空,把node插入末尾 if (pred != null) { node.prev = pred; //此时可能有其他线程插入,所以重新判断tail if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; } private Node enq(final Node node) { for (;;) { Node t = tail; //此时可能有其他线程插入,所以重新判断tail是否为空 if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }复制代码
4. node插入到队尾后,该线程不会立马挂起,会进行自旋操作。因为在node的插入过程,线程B(即之前没有阻塞的线程)可能已经执行完成,所以要判断该node的前一个节点pred是否为head节点(代表线程B),如果pred == head,表明当前节点是队列中第一个“有效的”节点,因此再次尝试tryAcquire获取锁,
- 如果成功获取到锁,表明线程B已经执行完成,线程A不需要挂起。
- 如果获取失败,表示线程B还未完成,至少还未修改state值。进行步骤5。
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); //如果它的前继节点为头结点,尝试获取锁,获取成功则返回 if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }复制代码
5. 前面我们已经说过只有前一个节点pred的线程状态为SIGNAL时,当前节点的线程才能被挂起。
- 如果pred的waitStatus == 0,则通过CAS指令修改waitStatus为Node.SIGNAL。
- 如果pred的waitStatus > 0,表明pred的线程状态CANCELLED,需从队列中删除。
- 如果pred的waitStatus为Node.SIGNAL,则通过LockSupport.park()方法把线程A挂起,并等待被唤醒,被唤醒后进入步骤6。
具体实现如下:
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }复制代码
6. 线程每次被唤醒时,都要进行中断检测,如果发现当前线程被中断,那么抛出InterruptedException并退出循环。从无限循环的代码可以看出,并不是被唤醒的线程一定能获得锁,必须调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。
线程释放锁过程
- 如果头结点head的waitStatus值为-1,则用CAS指令重置为0;
- 找到waitStatus值小于0的节点s,通过LockSupport.unpark(s.thread)唤醒线程。
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } 如果node的后继节点不为空且不是作废状态,则唤醒这个后继节点,否则 从末尾开始寻找合适的节点,如果找到,则唤醒 private void unparkSuccessor(Node node) { int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }复制代码
总结
对获取独占式锁过程总结
AQS的模板方法acquire通过调用子类自定义实现的tryAcquire获取同步状态失败后
->将线程构造成Node节点(addWaiter)
->将Node节点添加到同步队列对尾(addWaiter)
->节点以自旋的方法获取同步状态(acquirQueued)。在节点自旋获取同步状态时,只有其前驱节点是头节点的时候才会尝试获取同步状态,如果该节点的前驱不是头节点或者该节点的前驱节点是头节点单获取同步状态失败,则判断当前线程需要阻塞,如果需要阻塞则需要被唤醒过后才返回。
释放锁过程总结
首先调用子类的tryRelease()方法释放锁,然后唤醒后继节点,在唤醒的过程中,需要判断后继节点是否满足情况,如果后继节点不为且不是作废状态,则唤醒这个后继节点,否则从tail节点向前寻找合适的节点,如果找到,则唤醒.
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
删除
[英] 维克托•迈尔-舍恩伯格(Viktor Mayer-Schönberger)著 / 袁杰 译 / 浙江人民出版社 / 2013-1 / 49.90元
《删除》讲述了遗忘的美德,为读者展现了大数据时代的取舍之道。 《删除》从大数据时代信息取舍的目的和方法分别诠释了“被遗忘的权利”。维克托首先回溯了人类追寻记忆的过程,之后提出数字技术与全球网络正在瓦解我们天生的遗忘能力。对此,他考察了促进遗忘终止4大驱动力——数字化,廉价的存储器,易于提取,全球性访问。之后,他提出了当前数字化记忆的两大威胁——信息权力与时间,并给出了应对威胁的6大对策——数......一起来看看 《删除》 这本书的介绍吧!