内容简介:扭动序列是指数组中的相邻两个元素的差保证严格的正负交替,如这是一个可以通过动态规划来解决的问题。动态规划的特点就是,加入我知道第i个元素的结果,那么第i+1个元素的结果可以由其推到出来。这里假设我们知道,以第i个元素为止的最长子序列长度,包括上升序列up和下降序列down,则第i+1个元素的可能情况如下:代码如下:
题目要求
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence. For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero. Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order. Example 1: Input: [1,7,4,9,2,5] Output: 6 Explanation: The entire sequence is a wiggle sequence. Example 2: Input: [1,17,5,10,13,15,10,5,16,8] Output: 7 Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Example 3: Input: [1,2,3,4,5,6,7,8,9] Output: 2 Follow up: Can you do it in O(n) time?
扭动序列是指数组中的相邻两个元素的差保证严格的正负交替,如 [1,7,4,9,2,5]
数组中相邻两个元素的差为 6,-3,5,-7,3
,满足扭动序列的要求。现在要求从一个数组中,找到长度最长的扭动子序列,并返回其长度。
思路和代码
这是一个可以通过动态规划来解决的问题。动态规划的特点就是,加入我知道第i个元素的结果,那么第i+1个元素的结果可以由其推到出来。这里假设我们知道,以第i个元素为止的最长子序列长度,包括上升序列up和下降序列down,则第i+1个元素的可能情况如下:
-
nums[i+1]>nums[i]
: 即前一个元素和当前元素构成上升序列,因此up[i+1]=down[i]+1, down[i+1]=down[i]
,这是指以第i个元素为结尾的上升序列应当基于第i-1个元素为结尾的下降序列,而以第i个元素为结尾的下降序列,等同于基于第i-1个元素为结尾的下降序列。 -
nums[i+1]>nums[i]
: 即前一个元素和当前元素构成下降序列,因此down[i+1]=up[i]+1, up[i+1]=up[i]
-
nums[i+1]=nums[i]
:down[i+1]=down[i], up[i+1]=up[i]
代码如下:
public int wiggleMaxLength(int[] nums) { if( nums.length == 0 ) return 0; int[] up = new int[nums.length]; int[] down = new int[nums.length]; up[0] = 1; down[0] = 1; for(int i = 1 ; i<nums.length ; i++) { if(nums[i] > nums[i-1]) { up[i] = down[i-1] + 1; down[i] = down[i-1]; }else if(nums[i] < nums[i-1]) { down[i] = up[i-1] + 1; up[i] = up[i-1]; }else { down[i] = down[i-1]; up[i] = up[i-1]; } } return Math.max(up[nums.length-1], down[nums.length-1]); }
以上所述就是小编给大家介绍的《leetcode376. Wiggle Subsequence》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。