内容简介:给定一个整数数组,返回两个数字的索引,使它们加起来等于一个特定的目标。您可以假设每个输入都只有一个解决方案,并且不能两次使用相同的元素。给定数组:[2, 7, 11, 15] ,两数和为:9
Given an array of integers, return indices of the two numbers such that they add up to a specific target. You may assume that each input would have exactly one solution, and you may not use the same element twice. Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. 复制代码
翻译:
给定一个整数数组,返回两个数字的索引,使它们加起来等于一个特定的目标。
您可以假设每个输入都只有一个解决方案,并且不能两次使用相同的元素。
给定数组:[2, 7, 11, 15] ,两数和为:9
因为按顺序而言,2+7等于9,所以选择2和7对应的下标,0,1构成新数组。返回结果为[0,1]
解题思路
本题字面含义其实是求和,找寻两个数字的和为目标值,然后输出该两个数字的下标值。
换一个角度而言,我们这边有一个最终结果值--目标值,和一系列待选值--数组,如果我们在待选值中选择一个值,由目标值减去改值,就是另外需要寻找的值。这样我们就拿到全部需要的结果,需要做的只是从待选值中,查找那个差值。
解题方法
-
第一种解体方法,按照我们的思路来编辑,代码如下
for (int i = 0; i < nums.length; i++) { int differ = target - nums[i]; for (int m = i + 1; m < nums.length; m++) { if (differ == nums[m]) { return new int[]{i, m}; } } } return new int[]{}; 复制代码时间复杂度: 该方案用了两层嵌套循环,第一层循环度为n,第二层循环度也是n-m,所以f(n)=n*(n-m)=n^2-mn;所以O(f(n))=O(n^2),即T(n)=O(n^2)
空间复杂度: 该方案并没有使用额外度空间去存储,所以空间复杂度还是O(1);
-
第二种解题方法,是延伸出来,既然我们要寻找另外一个值,是否可以用map这类数据结构来方便查询呢?代码如下:
//先转化为hashmap Map<Integer, Integer> map = new HashMap<>(nums.length); for (int i = 0; i < nums.length; i++) { map.put(nums[i], i); } for (int i = 0; i < nums.length; i++) { Integer integer = map.get(target - nums[i]); //如果是本身,就跳过 if (integer != null && integer!=i) { return new int[]{i, integer}; } } return new int[]{}; 复制代码时间复杂度: 该方案用了单层循环,两次单层循环,所以f(n)=n+n=2n;所以O(f(n))=O(2n)=O(n),即T(n)=O(n)
空间复杂度: 该方案使用了HashMap去存储数值和索引的关系,所以是原来数组的近似2倍(这边不考虑因为数据结构而导致的开销),即为2n,所以总共的空间复杂度为O(f(n))=O(3n)=O(n),所以空间复杂度还是O(n);
-
第三种解题方案是针对与第二种解题优化的,第二种方案是直接把数组转化为map,所以这部分的空间开销是固定,如果我们可以一边读取,一边储存,那么是否可以更加简单呢?因为9-2=7,相对的9-7=2。所以按照这种思路,出现了第三种解题方案,代码如下:
Map<Integer, Integer> map = new HashMap<>(nums.length); for (int i = 0; i < nums.length; i++) { int differ = target - nums[i]; Integer result = map.get(differ); if (null != result) { return new int[]{result,i }; } map.put(nums[i], i); } return new int[]{}; 复制代码
总结
本题的大致解法如上所诉,但是可以更改的方式很多,如果输入的数组出现重复的情况,那么方法2是一个致命的错误解法,因为会把它覆盖,所以个人觉得,方法三是相对较优的一种解法。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
架构真经
马丁L. 阿伯特(Martin L. Abbott)、迈克尔T.费舍尔(Michael T. Fisher) / 机械工业出版社 / 2017-4 / 79
前言 感谢你对本书第2版感兴趣!作为一本入门、进修和轻量级的参考手册,本书旨在帮助工程师、架构师和管理者研发及维护可扩展的互联网产品。本书给出了一系列规则,每个规则围绕着不同的主题展开讨论。大部分的规则聚焦在技术上,少数规则涉及一些关键的思维或流程问题,每个规则对构建可扩展的产品都是至关重要的。这些规则在深度和焦点上都有所不同。有些规则是高级的,例如定义一个可以应用于几乎任何可扩展性问题的模......一起来看看 《架构真经》 这本书的介绍吧!