Go Ticker资源泄露案例 原 荐

栏目: Go · 发布时间: 5年前

内容简介:前面我们研究了Ticker的实现原理,已经知道Ticker如果不主动停止会有资源泄露的问题。本节介绍一个真实的案例,重点分析产生资源泄露的现象以及排查思路。曾经做过一个产品,不经意间出现了CPU使用率缓慢升高,最后CPU使用率竟然达到了100%,严重影响了业务。经过排查,问题出在Ticker的使用方式上,创建了Ticker,在使用结束后没有释放导致的。

前言

前面我们研究了Ticker的实现原理,已经知道Ticker如果不主动停止会有资源泄露的问题。

本节介绍一个真实的案例,重点分析产生资源泄露的现象以及排查思路。

应用背景

曾经做过一个产品,不经意间出现了CPU使用率缓慢升高,最后CPU使用率竟然达到了100%,严重影响了业务。经过排查,问题出在Ticker的使用方式上,创建了Ticker,在使用结束后没有释放导致的。

该产品需要监控其他服务器的健康状态,其中很常见的一种做法是心跳检测。简单的说,周期性的ping这些服务器,能在指定时间内收到ack说明与该服务器之间的网络没问题。

当时使用了一个小众的开源组件 tatsushid/go-fastping 来做ping。 该组件介绍如下图所示:

Go Ticker资源泄露案例 原 荐

问题现象

在做性能测试时,管理了1000台服务器,差不多4天后发现系统越来越慢,查看CPU使用情况,结果发现CPU使用率已经达到100%。

排查性能问题主要使用pprof,关于pprof的使用方法及原理介绍在请参照相关章节。

使用pprof查看CPU使用情况,主要是查看CPU都在忙什么:

Go Ticker资源泄露案例 原 荐

从上图可以看出,CPU主要是被runtime包占用了,其中第二行 runtime.siftdownTimer 正是timerproc中的一个动作。

再使用pprof查看函数调用栈,主要看是哪些函数在使用CPU:

Go Ticker资源泄露案例 原 荐

从上图可以看出,CPU主要是被ping模块占用,其中 ping.(*Pinger).Run 正是开源组件的一个接口。

经过pprof分析可以很清晰的指出问题出在go-fastping组件的Run()接口中,而且是与timer相关的。问题定位到这里,解决就很简单了。

此处,可以先总结一下Ticker资源泄露的现象:

  • CPU使用率持续升高
  • CPU使用率缓慢升高

源码分析

出问题的源码在ping.go的run()方法中。为叙述方便,对代码做了适当简化:

func (p *Pinger) run() {
	timeout := time.NewTicker(p.Timeout)    // 创建Ticker timeout
	interval := time.NewTicker(p.Interval)  // 创建Ticker

	for {
		select {
		case <-p.done:       // 正常退出,未关闭Ticker
			wg.Wait()
			return
		case <-timeout.C:    // 超时退出,未关闭Ticker
			close(p.done)
			wg.Wait()
			return
		case <-interval.C:
			if p.Count > 0 && p.PacketsSent >= p.Count {
				continue
			}
			err = p.sendICMP(conn)
			if err != nil {
				fmt.Println("FATAL: ", err.Error())
			}
		case r := <-recv:
			err := p.processPacket(r)
			if err != nil {
				fmt.Println("FATAL: ", err.Error())
			}
		}
		if p.Count > 0 && p.PacketsRecv >= p.Count {  // 退出,未关闭Ticker
			close(p.done)
			wg.Wait()
			return
		}
	}
}

该段代码可以看出,这个函数是有出口的,但在出口处没有关闭Ticker,导致资源泄露。

这个问题已经被修复了,可以看到修复后的局部代码如下:

timeout := time.NewTicker(p.Timeout)
	defer timeout.Stop()  // 使用defer保证Ticker最后被关闭
	interval := time.NewTicker(p.Interval)
	defer interval.Stop() // 使用defer保证Ticker最后被关闭

总结

有一种情况使用Ticker不主动关闭也不会造成资源泄露,比如,函数创建Ticker后就不会退出,直到进程结束。这种情况下不会持续的创建Ticker,也就不会造成资源泄露。

但是,不管哪种情况,创建一个Ticker后,紧跟着使用defer语句关闭Ticker总是好的习惯。因为,有可能别人无意间拷贝了你的部分代码,而忽略了关闭Ticker的动作。

赠人玫瑰手留余香,如果觉得不错请给个赞~

本篇文章已归档到GitHub项目,求星~ 点我即达


以上所述就是小编给大家介绍的《Go Ticker资源泄露案例 原 荐》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

共鸣:内容运营方法论

共鸣:内容运营方法论

舒扬 / 机械工业出版社 / 2017-5-8 / 59.00

近5年来网络信息量增长了近10倍,信息极度过剩。移动互联网以碎片化、强黏度以及惊人的覆盖率给传统的商业环境带来了巨大的影响,向陈旧的广告、公关、媒体行业展开了深度的冲击。 传统的以渠道为中心的传播思想几近失效,优秀内容成为了各行业最稀缺的资产,这是时代赋予内容生产者的巨大机会。本书作者在多年经验和大量案例研究的基础上,总结出了移动互联网时代的内容运营方法论——共鸣,它将告诉我们如何收获核心粉......一起来看看 《共鸣:内容运营方法论》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具