内容简介:序. multiprocessingPython中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在Python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。1. Process
序. multiprocessing
Python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在 Python 中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
1. Process
创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
例1.1:创建函数并将其作为单个进程
import multiprocessing import time def worker(interval): n = 5 while n > 0: print("The time is {0}".format(time.ctime())) time.sleep(interval) n -= 1 if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print ("p.pid:", p.pid) print ("p.name:", p.name) print ("p.is_alive:", p.is_alive())
运行结果:
p.pid: 2322
p.name: Process-1
p.is_alive: True
The time is Sun May 5 07:36:18 2019
The time is Sun May 5 07:36:21 2019
The time is Sun May 5 07:36:24 2019
The time is Sun May 5 07:36:27 2019
The time is Sun May 5 07:36:30 2019
[Finished in 15.2s]
例1.2:创建函数并将其作为多个进程
import multiprocessing import time def worker_1(interval): print ("worker_1") time.sleep(interval) print ("end worker_1") def worker_2(interval): print ("worker_2") time.sleep(interval) print ("end worker_2") def worker_3(interval): print ("worker_3") time.sleep(interval) print ("end worker_3") if __name__ == "__main__": p1 = multiprocessing.Process(target = worker_1, args = (2,)) p2 = multiprocessing.Process(target = worker_2, args = (3,)) p3 = multiprocessing.Process(target = worker_3, args = (4,)) p1.start() p2.start() p3.start() print("The number of CPU is:" + str(multiprocessing.cpu_count())) for p in multiprocessing.active_children(): print("child p.name:" + p.name + "\tp.id" + str(p.pid)) print ("END!!!!!!!!!!!!!!!!!")
运行结果如下:
worker_2
worker_1
worker_3
The number of CPU is:1
child p.name:Process-3 p.id2783
child p.name:Process-1 p.id2781
child p.name:Process-2 p.id2782
END!!!!!!!!!!!!!!!!!
end worker_1
end worker_2
end worker_3
[Finished in 4.1s]
例1.3:将进程定义为类
import multiprocessing import time class ClockProcess(multiprocessing.Process): def __init__(self, interval): multiprocessing.Process.__init__(self) self.interval = interval def run(self): n = 5 while n > 0: print("the time is {0}".format(time.ctime())) time.sleep(self.interval) n -= 1 if __name__ == '__main__': p = ClockProcess(3) p.start()
注:进程p调用start()时,自动调用run()
结果如下:
the time is Sun May 5 07:45:05 2019
the time is Sun May 5 07:45:08 2019
the time is Sun May 5 07:45:11 2019
the time is Sun May 5 07:45:14 2019
the time is Sun May 5 07:45:17 2019
[Finished in 15.1s]
例1.4:daemon程序对比结果
#1.4-1 不加daemon属性
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print ("end!")
结果如下:
end!
work start:Sun May 5 07:46:54 2019
work end:Sun May 5 07:46:57 2019
[Finished in 3.1s]
#1.4-2 加上daemon属性
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() print ("end!")
结果如下:
end!
[Finished in 0.1s]
注:因子进程设置了daemon属性,主进程结束,它们就随着结束了。
#1.4-3 设置daemon执行完结束的方法
import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() p.join() print ("end!")
结果如下:
work start:Sun May 5 07:49:59 2019
work end:Sun May 5 07:50:02 2019
end!
[Finished in 3.1s]
待续,继续更新中......
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158488.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- php多进程编程详解
- 详解Oracle实例内存结构和进程结构
- Android(IPC)进程间通讯1:详解Binder由来?
- Android 进程通讯机制之 Binder(信使)架构以及内存映射详解
- Spring Boot 2.x基础教程:进程内缓存的使用与Cache注解详解
- 一篇运维老司机的大数据平台监控宝典(1)-联通大数据集群平台监控体系进程详解
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。