12 个常见 CNN 模型论文集锦与 PyTorch 实现

栏目: Python · 发布时间: 5年前

内容简介:最近发现了一份不错的源代码,作者使用 PyTorch 实现了如今主流的卷积神经网络 CNN 框架,包含了 12 中模型架构。所有代码使用的数据集是 CIFAR。项目地址:https://github.com/BIGBALLON/CIFAR-ZOO

最近发现了一份不错的源代码,作者使用 PyTorch 实现了如今主流的卷积神经网络 CNN 框架,包含了 12 中模型架构。所有代码使用的数据集是 CIFAR。

项目地址:

https://github.com/BIGBALLON/CIFAR-ZOO

CNN 经典论文

该项目实现的是主流的 CNN 模型,涉及的论文包括:

1. CNN 模型(12 篇)

(lenet) LeNet-5, convolutional neural networks

论文地址:http://yann.lecun.com/exdb/lenet/

(alexnet) ImageNet Classification with Deep Convolutional Neural Networks

论文地址:https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

(vgg) Very Deep Convolutional Networks for Large-Scale Image Recognition

论文地址:https://arxiv.org/abs/1409.1556

(resnet) Deep Residual Learning for Image Recognition

论文地址:https://arxiv.org/abs/1512.03385

(preresnet) Identity Mappings in Deep Residual Networks

论文地址:https://arxiv.org/abs/1603.05027

(resnext) Aggregated Residual Transformations for Deep Neural Networks

论文地址:https://arxiv.org/abs/1611.05431

(densenet) Densely Connected Convolutional Networks

论文地址:https://arxiv.org/abs/1608.06993

(senet) Squeeze-and-Excitation Networks

论文地址:https://arxiv.org/abs/1709.01507

(bam) BAM: Bottleneck Attention Module

论文地址:https://arxiv.org/abs/1807.06514

(cbam) CBAM: Convolutional Block Attention Module

论文地址:https://arxiv.org/abs/1807.06521

(genet) Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

论文地址:https://arxiv.org/abs/1810.12348

(sknet) SKNet: Selective Kernel Networks

论文地址:https://arxiv.org/abs/1903.06586

2. 正则化(3 篇)

(shake-shake) Shake-Shake regularization

论文地址:https://arxiv.org/abs/1705.07485

(cutout) Improved Regularization of Convolutional Neural Networks with Cutout

论文地址:https://arxiv.org/abs/1708.04552

(mixup) mixup: Beyond Empirical Risk Minimization

论文地址:https://arxiv.org/abs/1710.09412

3. 学习速率调度器(2 篇)

(cos_lr) SGDR: Stochastic Gradient Descent with Warm Restarts

论文地址:https://arxiv.org/abs/1608.03983

(htd_lr) Stochastic Gradient Descent with Hyperbolic-Tangent Decay on Classification

论文地址:https://arxiv.org/abs/1806.01593

需求和使用

1. 需求

运行所有代码的开发环境需求为:

  • Python >= 3.5
  • PyTorch >= 0.4

  • TensorFlow/Tensorboard

其它依赖项 (pyyaml, easydict, tensorboardX)

作者提供了一键安装、配置开发环境的方法:

pip install -r requirements.txt

2. 模型代码

作者将所有的模型都存放在 model 文件夹下,我们来看一下 PyTorch 实现的 ResNet 网络结构:

# -*-coding:utf-8-*-
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['resnet20', 'resnet32', 'resnet44',
'resnet56', 'resnet110', 'resnet1202']


def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv_1 = conv3x3(inplanes, planes, stride)
self.bn_1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv_2 = conv3x3(planes, planes)
self.bn_2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv_1(x)
out = self.bn_1(out)
out = self.relu(out)

out = self.conv_2(out)
out = self.bn_2(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out


class Bottleneck(nn.Module):
expansion = 4

def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv_1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn_1 = nn.BatchNorm2d(planes)
self.conv_2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn_2 = nn.BatchNorm2d(planes)
self.conv_3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn_3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv_1(x)
out = self.bn_1(out)
out = self.relu(out)

out = self.conv_2(out)
out = self.bn_2(out)
out = self.relu(out)

out = self.conv_3(out)
out = self.bn_3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out


class ResNet(nn.Module):

def __init__(self, depth, num_classes, block_name='BasicBlock'):
super(ResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 model
if block_name == 'BasicBlock':
assert (
depth - 2) % 6 == 0, 'depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202'
n = (depth - 2) // 6
block = BasicBlock
elif block_name == 'Bottleneck':
assert (
depth - 2) % 9 == 0, 'depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199'
n = (depth - 2) // 9
block = Bottleneck
else:
raise ValueError('block_name shoule be Basicblock or Bottleneck')

self.inplanes = 16
self.conv_1 = nn.Conv2d(3, 16, kernel_size=3, padding=1,
bias=False)
self.bn_1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.stage_1 = self._make_layer(block, 16, n)
self.stage_2 = self._make_layer(block, 32, n, stride=2)
self.stage_3 = self._make_layer(block, 64, n, stride=2)
self.avgpool = nn.AvgPool2d(8)
self.fc = nn.Linear(64 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.xavier_normal(m.weight.data)
nn.init.kaiming_normal_(m.weight.data)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv_1(x)
x = self.bn_1(x)
x = self.relu(x) # 32x32

x = self.stage_1(x) # 32x32
x = self.stage_2(x) # 16x16
x = self.stage_3(x) # 8x8

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)

return x


def resnet20(num_classes):
return ResNet(depth=20, num_classes=num_classes)


def resnet32(num_classes):
return ResNet(depth=32, num_classes=num_classes)


def resnet44(num_classes):
return ResNet(depth=44, num_classes=num_classes)


def resnet56(num_classes):
return ResNet(depth=56, num_classes=num_classes)


def resnet110(num_classes):
return ResNet(depth=110, num_classes=num_classes)


def resnet1202(num_classes):
return ResNet(depth=1202, num_classes=num_classes)

其它模型也一并能找到。

3. 使用

简单运行下面的命令就可以运行程序了:

## 1 GPU for lenet
CUDA_VISIBLE_DEVICES=0 python -u train.py --work-path ./experiments/cifar10/lenet

## resume from ckpt
CUDA_VISIBLE_DEVICES=0 python -u train.py --work-path ./experiments/cifar10/lenet --resume

## 2 GPUs for resnet1202
CUDA_VISIBLE_DEVICES=0,1 python -u train.py --work-path ./experiments/cifar10/preresnet1202

## 4 GPUs for densenet190bc
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u train.py --work-path ./experiments/cifar10/densenet190bc

我们使用 yaml 文件 config.yaml 保存参数,查看 ./experimets 中的任何文件以了解更多详细信息。您可以通过 tensorboard 中 tensorboard –logdir path-to-event –port your-port 查看训练曲线。培训日志将通过日志转储,请检查您工作路径中的 log.txt。

模型在 CIFAR 数据集上的结果

1. 12 种 CNN 模型:

12 个常见 CNN 模型论文集锦与 PyTorch 实现

2. 正则化

默认的数据扩充方法是 RandomCrop+RandomHorizontalLip+Normalize,而 √ 表示采用哪种附加方法。

12 个常见 CNN 模型论文集锦与 PyTorch 实现

PS:Shake_Resnet26_2X64d 通过剪切和混合达到 97.71% 的测试精度!很酷,对吧?

3. 不同的学习速率调度器

12 个常见 CNN 模型论文集锦与 PyTorch 实现

最后,再附上项目地址:

https://github.com/BIGBALLON/CIFAR-ZOO

12 个常见 CNN 模型论文集锦与 PyTorch 实现


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品心经

产品心经

闫荣 / 机械工业出版社 / 2014-9-30 / 59

产品经理如何才能迅速地、全方位地提升自己的能力,从而打造出让用户尖叫并疯狂爱上的产品?有没有捷径?从成功的、有经验的产品经理的实践真知和智慧中学习是一个很好的途径!本书就是一位拥有近10年产品经验的资深产品经理的实践真知和智慧的结晶,从产品经理核心素养、产品认知、战略与规划、精益开发、需求分析与管理、用户体验、精细运营7大方面,系统梳理了能全面、迅速提升产品经理能力,从而打造出让用户尖叫的产品的5......一起来看看 《产品心经》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具