内容简介:决策树(Decision Tree)是一种十分常用的分类方法,作为一个预测模型,决策树表示对象属性与对象值之间的一种映射关系。公式表示为:公式表示为:
决策树(Decision Tree)是一种十分常用的分类方法,作为一个预测模型,决策树表示对象属性与对象值之间的一种映射关系。
1. 信息熵和信息增益
1.1 信息熵
公式表示为: 其中S表示样本集,c表示样本集合中类别个数,Pi表示第i个类别的概率。
- 信息熵的意思就是一个变量i(就是这里的类别)可能的变化越多(只和值的种类多少以及发生概率有关),它携带的信息量就越大(因为是相加累计),即类别变量i的信息熵越大。
- 二分类问题中,当X的概率P(X)为0.5时,表示变量的不确定性最大,此时的熵达到最大值1。
- 信息熵反映系统的确定程度:信息熵越低,系统越确定;信息熵越高,系统越不确定
1.2 条件熵
公式表示为: 其中ti表示属性T的取值。条件熵的直观理解:假设单独计算明天下雨的信息熵:H(Y)=2,而在已知今天阴天情况下计算明天下雨的条件熵:H(Y|X)=0.5(熵变小,确定性变大,明天下雨的概率变大,信息量减少),这样相减后为1.5,在获得阴天这个信息后,下雨信息不确定性减少了1.5,信息增益很大,所以今天是否时阴天这个特征信息X对明天下雨这个随机变量Y的来说是很重要的。
1.3 信息增益
公式表示为:
信息增益考察某个特征对整个系统的贡献。
2. 算法实现
2.0 数据集描述
通过“不浮出水面能否生存 no surfacing
” 和 “是否有脚蹼 flippers
”来判断5种海洋生物是否属于鱼类。
2.1 计算信息熵
from math import log def calcInforEnt(dataSet): num = len(dataSet) labelCount = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCount.keys(): labelCount[currentLabel] = 0 labelCount[currentLabel] += 1 # 统计类别数目,labelCount = {'yes': 2, 'no': 3} inforEnt = 0.0 for key in labelCount: prob = float(labelCount[key]) / num inforEnt -= prob * log(prob, 2) return inforEnt
测试:
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] calcInforEnt(dataSet) # 0.9709505944546686
2.2 划分数据集
按照给定特征值划分数据集
def splitDataSet(dateSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet
测试:
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] splitDataSet(dataSet, 0, 1) # [[1, 'yes'], [1, 'yes'], [0, 'no']] splitDataSet(dataSet, 0, 0) # [[1, 'no'], [1, 'no']]
2.3 选择最好的特征划分数据集
遍历整个数据集,循环计算信息熵和splitDataSet()函数,找到最好的特征划分方式。
def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 # 数据集的最后一列表示类标签 baseEntropy = calcInforEnt(dataSet) bestInforGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] # 取出每个属性的所有值,组成一个数组 uniqueVals = set(featList) # 去重 newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcInforEnt(subDataSet) inforGain = bestInforGain - newEntropy if inforGain > bestInforGain: bestInforGain = inforGain bestFeature = i return bestFeature
测试:
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] chooseBestFeatureToSplit(dataSet) # 0
2.4 递归构建决策树
工作原理:得到原始数据集,基于最佳的属性划分数据集,由于属性存在两个或以上属性值,因此存在两个或以上的数据分支。第一次划分结束后,数据向下传递到树分支中,每个分支按照条件继续分叉。
递归结束条件:程序遍历完所有划分数据集的属性,或者每一个分支下的实例属于相同分类
import operator def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] # 创建树 def ctrateTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0] == len(classList)): return classList[0] # 类型相同,停止划分 if len(dataSet[0]) == 1: return majorityCnt(classList) # 遍历结束,返回出现频率最高的特征 bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = ctrateTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree
测试:
dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] ctrateTree(dataSet, labels) # {'no surfacing': {0: 'no', 1: {'flippers':{0: 'no', 1: 'yes'}}}}
3. 评价
以上决策树的ID3的实现方式,没有剪枝的步骤,容易发生过度拟合,导致决策树过高。C4.5决策树的改进策略:
- 用信息增益率来选择属性,克服了用信息增益选择属性偏向选择多值属性的不足
- 在构造树的过程中进行剪枝,参考 剪枝算法
- 对连续属性进行离散化
- 能够对不完整的数据进行处理
4. 参考
- 《机器学习实战》
- 信息熵与信息增益
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。