内容简介:本文原文今年的 Spark + AI Summit 2019 databricks 开源了几个重磅的项目,比如 Delta Lake,Koalas 等,Koalas 是一个新的开源项目,它增强了 PySpark 的 DataFrame API,使其与 pandas 兼容。Python 数据科学在过去几年中爆炸式增长,pandas 已成为生态系统的关键。 当数据科学家拿到一个数据集时,他们会使用 pandas 进行探索。 它是数据清洗和分析的终极工具。 事实上,pandas 的 read_csv 函数通常是学
本文原文 (点击下面 阅读原文 即可进入) https://www.iteblog.com/archives/2549.html
今年的 Spark + AI Summit 2019 databricks 开源了几个重磅的项目,比如 Delta Lake,Koalas 等,Koalas 是一个新的开源项目,它增强了 PySpark 的 DataFrame API,使其与 pandas 兼容。
Python 数据科学在过去几年中爆炸式增长,pandas 已成为生态系统的关键。 当数据科学家拿到一个数据集时,他们会使用 pandas 进行探索。 它是数据清洗和分析的终极工具。 事实上,pandas 的 read_csv 函数通常是学生在数据科学旅程中的第一个命令。
那么这么用的问题是什么呢? pandas 不能很好地适应大数据,它专为单机处理小型数据集而设计的。另一方面,Apache Spark 已成为大数据 workloads 的事实标准。今天,许多数据科学家将 pandas 用于课程作业,个人业余项目(pet projects)和小型数据任务,但是当他们使用非常大的数据集时,他们必须迁移到 PySpark 以便可以利用 Spark,或者对其数据进行下采样,以便他们可以使用 pandas。
现在有了 Koalas,数据科学家可以从单机过渡到分布式环境,而无需学习新的框架。 正如您在下面所看到的,只需将一个包替换为另一个包,就可以使用 Koalas 在 Spark 上扩展我们的 pandas 代码。
pandas 作为 Python 数据科学的标准词汇
随着 Python 成为数据科学的主要语言,社区基于最重要的库构建了一些词汇表,包括 pandas,matplotlib 和 numpy。 当数据科学家使用这些库时,他们可以充分表达他们的想法,并根据这个想法得出结论。 他们可以概念化某些东西并立即执行。
但是当他们不得不使用他们词汇表之外的库时,他们会遇到许多问题,他们每隔几分钟检查一次 StackOverflow,并且必须中断他们的工作流程才能使他们的代码工作。 尽管 PySpark 使用起来很简单并且在很多方面类似于 pandas,但他们仍然需要学习不同的词汇。
在 Databricks,我们相信 Spark 上的 pandas 将大大提高数据科学家和数据驱动型组织的工作效率,原因如下:
-
Koalas 无需决定是否对给定的数据集使用 pandas 或 PySpark;
-
对于最初用 pandas 编写的单机程序,Koalas 允许数据科学家通过 pandas 和 Koalas 的轻松切换来扩展在 Spark 上的代码;
-
Koalas 为组织中的更多数据科学家解锁大数据,因为他们不再需要学习 PySpark 来利用 Spark。
下面我们展示了两个简单而强大的 pandas 方法示例,这些方法可以直接在 Spark with Koalas 上运行。
具有分类变量的特征工程
数据科学家在构建 ML 模型时经常会遇到分类变量。 一种流行的技术是将分类变量编码为虚拟变量。 在下面的示例中,有几个分类变量,包括呼叫类型,邻域和单元类型。 pandas 的get_dummies 方法是一种方便的方法。 下面我们将展示如何使用 pandas:
原始的 DataFrame
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公众号: iteblog_hadoop
变换后的 DataFrame
如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公众号:iteblog_hadoop
有了 Koalas 之后,我们可以通过一些调整在 Spark 上做到这一点:
带时间戳的算术
数据科学家一直使用时间戳,但正确处理它们可能会变得非常困难。pandas 提供了一个优雅的解决方案。 假设您有一个日期的 DataFrame:
接下来的安排和 Koalas 入门
我们创建了 Koalas ,是因为我们遇到了许多不愿意处理大数据的数据科学家。我们相信 Koalas 会通过让他们很容易的在 Spark 上扩展他们程序,从而使得他们能够做更多的事。
到目前为止,我们已经实现了常见的 DataFrame 操作方法,以及 pandas 中强大的索引技术。 以下是我们路线图中的一些即将推出的项目,主要侧重于改善覆盖范围:
-
用于处理文本数据的字符串操作;
-
时间序列数据的日期/时间操作。
该计划尚处于初期阶段,但正在迅速发展。 如果您有兴趣了解更多有关 Koalas 及入门的信息,请查看该项目的 GitHub 地址。
本文翻译自:
https://databricks.com/blog/2019/04/24/koalas-easy-transition-from-pandas-to-apache-spark.html
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
细节决定交互设计的成败
张亮 / 2009-3 / 49.00元
《细节决定交互设计的成败》是一本非常实用的有关软件界面的交互设计和可用性设计方面知识的书籍,通过采用一问一答的形式,你将会有针对性地学习到一些能够很快应用在自己软件开发工作中的细节知识和诀窍。例如,如何减轻用户的等待感,如何预防和减少用户的使用错误等。另外,你会发现阅读《细节决定交互设计的成败》时会非常轻松和愉悦;这是由于《细节决定交互设计的成败》写作上的两个特点:第一,采用较多日常生活中的例子来......一起来看看 《细节决定交互设计的成败》 这本书的介绍吧!