从动力学角度看优化算法(四):GAN的第三个阶段

栏目: 数据库 · 发布时间: 5年前

内容简介:在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:1、

在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。

作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:

1、 样本阶段 :在这个阶段中,我们了解了GAN的“鉴别者-造假者”诠释,懂得从这个原理出发来写出基本的GAN公式(如原始GAN、LSGAN),比如判别器和生成器的loss,并且完成简单GAN的训练;同时,我们知道GAN有能力让图片更“真”,利用这个特性可以把GAN嵌入到一些综合模型中。

2、 分布阶段 :在这个阶段中,我们会从概率分布及其散度的视角来分析GAN,典型的例子是WGAN和f-GAN,同时能基本理解GAN的训练困难问题,比如梯度消失和mode collapse等,甚至能基本地了解变分推断,懂得自己写出一些概率散度,继而构造一些新的GAN形式。

3、 动力学阶段 :在这个阶段中,我们开始结合优化器来分析GAN的收敛过程,试图了解GAN是否能真的达到理论的均衡点,进而理解GAN的loss和正则项等因素如何影响的收敛过程,由此可以针对性地提出一些训练策略,引导GAN模型到达理论均衡点,从而提高GAN的效果。

事实上,不仅仅是GAN,对于一般的模型理解,也可以大致上分为这三个阶段。当然也许有热衷于几何解释或其他诠释的读者会不同意第二点,觉得没必要非得概率分布的角度来理解。但事实上几何视角和概率视角都有一定的相通之处,而本文所写的三个阶段只是一个粗糙的总结,简单来说就是从局部到整体,然后再到优化器。

而本文主要聚焦于GAN的第三个阶段:GAN的动力学。

一般情况下,GAN可以表示为一个min-max过程,记作

\begin{equation}\min_G \max_D L(G,D)\end{equation}

其中$\max_D L(G,D)$这一步定义了一个概率散度而$\max_G$这一步则在最小化散度,相关的讨论也可以参考本网站的 《f-GAN简介:GAN模型的生产车间》《不用L约束又不会梯度消失的GAN,了解一下?》

注意,从理论上讲,这个min-max过程是有序的,即需要彻底地、精确地完成$\max_D$这一步,然后才去$\min_G$。但是很显然,实际训练GAN时我们做不到这一点,我们都是$D,G$交替训练的,理想情况下我们还希望$D,G$每次只各自训练一次,这样训练效率最高,而这样的训练方法对应于一个动力系统。

在我们的“ 从动力学角度看优化算法 ”系列中,我们将梯度下降看成是在数学求解动力系统(也就是一个常微分方程组,简称ODEs)

\begin{equation}\dot{\boldsymbol{\theta}} = - \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})\end{equation}

其中$L(\boldsymbol{\theta})$是模型的loss,而$\boldsymbol{\theta}$是模型的参数。如果考虑随机性,那么则需要加上一个噪声项,变成一个随机微分方程,但本文我们不考虑随机性,这不影响我们对局部收敛性的分析。假定读者已经熟悉了这种转换,下面就来讨论GAN对应的过程。

GAN是一个min-max的过程,换句话说,一边是梯度下降,另一边是梯度上升,假设$\boldsymbol{\varphi}$是判别器的参数,$\boldsymbol{\theta}$是判别器的参数,那么GAN对应的动力系统是

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} L(\boldsymbol{\varphi},\boldsymbol{\theta})\\ - \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\varphi},\boldsymbol{\theta})\end{pmatrix}\end{equation}

当然,对于更一般的GAN,有时候两个$L$会稍微不一样:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} L_1(\boldsymbol{\varphi},\boldsymbol{\theta})\\ - \nabla_{\boldsymbol{\theta}} L_2(\boldsymbol{\varphi},\boldsymbol{\theta})\end{pmatrix}\end{equation}

不管是哪一种,右端两项都是一正一负,而就是因为这一正一负的差异,导致了GAN训练上的困难~我们下面就逐步认识到这一点。

将GAN的优化过程视为一个(随机)动力系统,基于这个观点进行研究分析的文献已有不少,我读到的包括 《The Numerics of GANs》《GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium》《Gradient descent GAN optimization is locally stable》《Which Training Methods for GANs do actually Converge?》 ,而本文只不过是前辈大牛们的工作的一个学习总结。

在这几篇文献中,大家可能比较熟悉的是第二篇,因为就是第二篇提出了TTUR的GAN训练策略以及提出了FID作为GAN的性能指标,而这篇论文的理论基础也是将GAN的优化看成前述的随机动力系统,然后引用了随机优化中的一个定理,得出可以给生成器和判别器分别使用不同的学习率(TTUR)。而其余几篇,都是直接将GAN的优化看成确定性的动力系统(ODEs),然后用分析ODEs的方法来分析GAN。由于ODEs的理论分析/数值求解都说得上相当成熟,因此可以直接将很多ODEs的结论用到GAN中。

本文的思路和结果主要参考 《Which Training Methods for GANs do actually Converge?》 ,这篇论文的主要贡献如下:

1、提出了Dirac GAN的概念,借助它可以快速地对GAN的性态有个基本的认识;
2、完整地分析了带零中心梯度惩罚的WGAN(也是WGAN-div)的局部收敛性;
3、利用零中心梯度惩罚的WGAN训练了1024的人脸、256的LSUN生成,并且不需要像PGGAN那样渐进式训练。

由于实验设备限制,第三点我们难以复现,而第二点涉及到比较复杂的理论分析,我们也不作过多讨论,有兴趣攻克的读者直接读原论文即可。本文主要关心第一点: Dirac GAN

所谓Dirac GAN,就是考虑真样本分布只有一个样本点的情况下,待研究的GAN模型的表现。假设真实样本点是零向量$\boldsymbol{0}$,而假样本为$\boldsymbol{\theta}$,其实它也代表着生成器的参数;而判别器采用最简单的线性模型,即(加激活函数之前)为$D(\boldsymbol{x})=\boldsymbol{x}\cdot \boldsymbol{\varphi}$,其中$\boldsymbol{\varphi}$代表着判别器的参数。Dirac GAN就是考虑这样的一个极简模型下,假样本最终能否收敛到真样本,也就是说$\boldsymbol{\theta}$最终能否收敛到$\boldsymbol{0}$。

然而,原论文只考虑了样本点的维度是一维的情形,即$\boldsymbol{0},\boldsymbol{\theta},\boldsymbol{\varphi}$都是标量,但本文后面的案例表明,对于某些例子,一维Dirac GAN不足以揭示它的收敛性态,一般情况下至少需要2维Dirac GAN才能较好地分析一个GAN的渐近收敛性。

上一节我们给出了Dirac GAN的基本概念,指出它可以帮助我们对GAN的收敛性态有个快速的认识。在这部分内容中,我们通过分析若干常见GAN,来更详细地表明Dirac GAN怎么做到这一点。

Vanilla GAN,或者叫做原始GAN、标准GAN,它就是指Goodfellow最早提出来的GAN,它有saturating和non-saturating两种形式。作为例子,我们来分析比较常用的non-saturating形式:

\begin{equation}\begin{aligned}&\min_D \mathbb{E}_{\boldsymbol{x}\sim p(\boldsymbol{x})}[-\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[-\log (1-D(\boldsymbol{x}))]\\

&\min_G \mathbb{E}_{\boldsymbol{z}\sim q(\boldsymbol{z})}[-\log D(G(\boldsymbol{z}))]

\end{aligned}\end{equation}

这里的$p(\boldsymbol{x}),q(\boldsymbol{x})$分别是真假样本分布,而$q(\boldsymbol{z})$是噪声分布,$D(\boldsymbol{x})$用sigmoid激活。对应到Dirac GAN下,那就简单得多,因为真样本只有一个点而且为$\boldsymbol{0}$,所以判别器的loss只有一项,而判别器可以完全写出为$\boldsymbol{\theta}\cdot \boldsymbol{\varphi}$,其中$\boldsymbol{\theta}$也就是假样本,或者说生成器,最终结果是:

\begin{equation}\begin{aligned}&\min_{\boldsymbol{\varphi}} -\log (1-\sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi}))\\

&\min_{\boldsymbol{\theta}} -\log \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi})

\end{aligned}\end{equation}

对应的动力系统是:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} \log (1-\sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi}))\\ \nabla_{\boldsymbol{\theta}} \log \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi})\end{pmatrix} = \begin{pmatrix} - \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi}) \boldsymbol{\theta}\\ (1 - \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi})\boldsymbol{\varphi}\end{pmatrix}\end{equation}

这个动力系统的平衡点(让右端直接等于0)是$\boldsymbol{\varphi}=\boldsymbol{\theta}=\boldsymbol{0}$,也就是假样本变成了真样本。但问题是从一个初始点出发,该初始点最终能否收敛到平衡点却是个未知数。

从动力学角度看优化算法(四):GAN的第三个阶段

数值求解的non-saturating的Dirac GAN的优化轨迹(二维情形),可以发现它确实只是在均衡点(红色点)周围振荡,不收敛

为了做出判断,我们假设系统已经跑到了平衡点附近,即$\boldsymbol{\varphi}\approx \boldsymbol{0}, \boldsymbol{\theta}\approx \boldsymbol{0}$,那么可以近似地线性展开:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} - \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi}) \boldsymbol{\theta}\\ (1 - \sigma(\boldsymbol{\theta}\cdot \boldsymbol{\varphi})\boldsymbol{\varphi}\end{pmatrix} \approx \begin{pmatrix} - \boldsymbol{\theta} / 2\\ \boldsymbol{\varphi} / 2\end{pmatrix}\end{equation}

最终近似地有

\begin{equation}\ddot{\boldsymbol{\theta}}\approx - \boldsymbol{\theta} / 4\end{equation}

学过常微分方程的同学都知道,这是最简单的线性常微分方程之一,只要初始值不是$\boldsymbol{0}$,那么它的解是一个周期解,也就是说并不会出现$\boldsymbol{\theta}\to \boldsymbol{0}$的特性。换句话说,对于non-saturating的Vanilla GAN,哪怕模型的初始化已经相当接近均衡点了,但是它始终不会收敛到均衡点,而是在均衡点附近振荡。数值模拟的结果则进一步证明了这一点。

事实上,类似的结果出现在任何形式的f-GAN中,即以f散度为基础的所有GAN都存在同样的问题(不计正则项),即它们会慢慢收敛到均衡点附近,最终都只是在均衡点附近振荡,无法完全收敛到均衡点。

这里再重复一下逻辑:我们知道系统的理论平衡点确实是我们想要的,但是从任意一个初值(相当于模型的初始化)出发,经过迭代后最终是否能跑到理论平衡点(相当于理想地完成GAN的训练),这无法很显然地得到结果,至少需要在均衡点附近做线性展开,分析它的收敛性,这就是说所谓的局部渐近收敛性态。

f-GAN败下阵来了,那WGAN又如何呢?它又能否收敛到理想的均衡点呢?

WGAN的一般形式是

\begin{equation}\min_G \max_{D, \Vert D\Vert_L\leq 1} \mathbb{E}_{\boldsymbol{x}\sim p(\boldsymbol{x})}[D(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{z}\sim q(\boldsymbol{z})}[D(G(\boldsymbol{z}))]\end{equation}

对应到Dirac GAN,$D(\boldsymbol{x})=\boldsymbol{x}\cdot \boldsymbol{\varphi}$,而$\Vert D\Vert_L\leq 1$可以由$\Vert \boldsymbol{\varphi}\Vert=1$来保证($\Vert\cdot\Vert$是$l_2$模长),换言之,$D(\boldsymbol{x})$加上L约束后为$D(\boldsymbol{x})=\boldsymbol{x}\cdot \boldsymbol{\varphi} / \Vert\boldsymbol{\varphi}\Vert$,那么WGAN对应的Dirac GAN为

\begin{equation}\min_{\boldsymbol{\theta}}\max_{\boldsymbol{\varphi}} \frac{-\boldsymbol{\theta}\cdot \boldsymbol{\varphi}}{\Vert\boldsymbol{\varphi}\Vert}\end{equation}

对应的动力系统是:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} (-\boldsymbol{\theta}\cdot \boldsymbol{\varphi} / \Vert \boldsymbol{\varphi}\Vert)\\ \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}\cdot \boldsymbol{\varphi} / \Vert \boldsymbol{\varphi}\Vert)\end{pmatrix} = \begin{pmatrix} -\boldsymbol{\theta} / \Vert \boldsymbol{\varphi}\Vert + (\boldsymbol{\theta}\cdot \boldsymbol{\varphi})\boldsymbol{\varphi} / \Vert \boldsymbol{\varphi}\Vert^3\\ \boldsymbol{\varphi} / \Vert \boldsymbol{\varphi}\Vert\end{pmatrix}\end{equation}

我们主要关心$\boldsymbol{\theta}$是否会趋于$\boldsymbol{0}$,可以引入类似前一节的线性展开,但是由于$\Vert \boldsymbol{\varphi}\Vert$在分母,所以讨论起来会比较困难。最干脆的方法是直接数值求解这个方程组,结果如下图:

从动力学角度看优化算法(四):GAN的第三个阶段

数值求解的WGAN对应的Dirac GAN的优化轨迹(二维情形),可以发现它确实只是在均衡点(红色点)周围振荡,不收敛

可以看到,结果依然是在均衡点附近振荡,并没能够达到均衡点。这个结果表明了,WGAN(同时自然也包括了谱归一化)都没有局部收敛性,哪怕已经跑到了均衡点附近,依然无法准确地落在均衡点上。

(注:稍加分析就能得出,如果只考虑一维的Dirac GAN,那么将无法分析本节的WGAN和后面的GAN-QP,这就是只考虑一维情形的局限性。)

大家可能会疑惑,前面不是讨论了WGAN了吗,怎么还要讨论WGAN-GP?

事实上,从优化角度看,前面所说的WGAN和WGAN-GP是两类不一样的模型。前面的WGAN是指事先在判别器上加上L约束(比如谱归一化),然后进行对抗学习;这里的WGAN-GP指的是判别器不加L约束,而是通过梯度惩罚项(Gradient Penalty)来迫使判别器具有L约束。这里讨论的梯度惩罚有两种,第一种是 《Improved Training of Wasserstein GANs》 提出来的“以1为中心的梯度惩罚”,第二种是 《Wasserstein Divergence for GANs》《Which Training Methods for GANs do actually Converge?》 等文章提倡的“以0为中心的梯度惩罚”。下面我们会对比这两种梯度惩罚的不同表现。

梯度惩罚的一般形式是:

\begin{equation}\begin{aligned}&\min_{D} \mathbb{E}_{\boldsymbol{x}\sim q(\boldsymbol{x})}[D(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x}\sim p(\boldsymbol{x})}[D(\boldsymbol{x})] + \lambda \mathbb{E}_{\boldsymbol{x}\sim r(\boldsymbol{x})}\left[(\left\Vert\nabla_{\boldsymbol{x}}D(\boldsymbol{x})\right\Vert - c)^2\right]\\

&\min_{G} \mathbb{E}_{\boldsymbol{z}\sim q(\boldsymbol{z})}[-D(G(\boldsymbol{z}))] \end{aligned}\end{equation}

其中$c=0$或$c=1$,而$r(\boldsymbol{x})$是$p(\boldsymbol{x})$和$q(\boldsymbol{x})$的某个衍生分布,一般直接取真样本分布、假样本分布或者真假样本插值。

对于Dirac GAN来说:

\begin{equation}\nabla_{\boldsymbol{x}}D(\boldsymbol{x}) = \nabla_{\boldsymbol{x}}(\boldsymbol{x}\cdot\boldsymbol{\varphi})=\boldsymbol{\varphi}\end{equation}

也就是说它跟$\boldsymbol{x}$没关系,所以$r(\boldsymbol{x})$怎么取都不影响结果了。因此,WGAN-GP版本的Dirac GAN形式为:

\begin{equation}\begin{aligned}&\min_{\boldsymbol{\varphi}} \boldsymbol{\theta}\cdot\boldsymbol{\varphi} + \lambda (\left\Vert \boldsymbol{\varphi}\right\Vert - c)^2\\

&\min_{\boldsymbol{\theta}} -\boldsymbol{\theta}\cdot\boldsymbol{\varphi}\end{aligned}\end{equation}

对应的动力系统是:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} (-\boldsymbol{\theta}\cdot\boldsymbol{\varphi} - \lambda (\left\Vert \boldsymbol{\varphi}\right\Vert - c)^2)\\ \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}\cdot\boldsymbol{\varphi})\end{pmatrix} = \begin{pmatrix} -\boldsymbol{\theta} - 2\lambda (1 - c / \Vert \boldsymbol{\varphi}\Vert) \boldsymbol{\varphi} \\ \boldsymbol{\varphi} \end{pmatrix}\end{equation}

下面我们分别观察$c=0,c=1$时$\boldsymbol{\theta}$是否会趋于$\boldsymbol{0}$,当$c=0$时其实只是一个线性常微分方程组,可以解析求解,但$c=1$时比较复杂,因此简单起见,我们还是直接用数值求解的方式:

从动力学角度看优化算法(四):GAN的第三个阶段

数值求解的WGAN-GP(c=0)对应的Dirac GAN的优化轨迹(二维情形),可以发现它能够渐近收敛到原点

从动力学角度看优化算法(四):GAN的第三个阶段

数值求解的WGAN-GP(c=1)对应的Dirac GAN的优化轨迹(二维情形),可以发现它确实只是在均衡点(红色点)周围振荡,不收敛

上图是在同样的初始条件(初始化)下,$c=0,c=1$的梯度惩罚的不同表现,两图的其他参数都一样。可以看到,加入“以1为中心的梯度惩罚”后,Dirac GAN并没有渐近收敛到原点,反而只是收敛到一个圆上;而加入“以0为中心的梯度惩罚”则可以达到这个目的。这说明早期提出的梯度惩罚项确实是存在一些缺陷的,而“以0为中心的梯度惩罚”在收敛性态上更好。尽管上述仅仅对Dirac GAN做了分析,但结论具有代表性,因为关于0中心的梯度惩罚的优越性的一般证明在 《Which Training Methods for GANs do actually Converge?》 中已经给出,并得到实验验证。

最后来分析一下自己提出的GAN-QP表现如何。相比WGAN-GP,GAN-QP用二次型的差分惩罚项替换了梯度惩罚,并补充了一些证明。相比梯度惩罚,差分惩罚的最主要优势是计算速度更快。

GAN-QP可以有多种形式,一种基本形式是:

\begin{equation}\begin{aligned}&\min_{D} \mathbb{E}_{\boldsymbol{x}_r\sim p(\boldsymbol{x}_r),\boldsymbol{x}_f\sim q(\boldsymbol{x}_f)}\left[D(\boldsymbol{x}_f) - D(\boldsymbol{x}_r) + \frac{(D(\boldsymbol{x}_f) - D(\boldsymbol{x}_r))^2}{2\lambda \Vert \boldsymbol{x}_f - \boldsymbol{x}_r\Vert}\right]\\

&\min_{G} \mathbb{E}_{\boldsymbol{z}\sim q(\boldsymbol{z})}[-D(G(\boldsymbol{z}))] \end{aligned}\end{equation}

对应的Dirac GAN为

\begin{equation}\begin{aligned}&\min_{\boldsymbol{\varphi}} \boldsymbol{\theta}\cdot\boldsymbol{\varphi} + \frac{(\boldsymbol{\theta}\cdot\boldsymbol{\varphi})^2}{2\lambda \Vert \boldsymbol{\theta}\Vert}\\

&\min_{\boldsymbol{\theta}} -\boldsymbol{\theta}\cdot\boldsymbol{\varphi}\end{aligned}\end{equation}

对应的动力系统是:

\begin{equation}\begin{pmatrix}\dot{\boldsymbol{\varphi}}\\ \dot{\boldsymbol{\theta}}\end{pmatrix} = \begin{pmatrix} \nabla_{\boldsymbol{\varphi}} (-\boldsymbol{\theta}\cdot\boldsymbol{\varphi} - (\boldsymbol{\theta}\cdot\boldsymbol{\varphi})^2 / (2\lambda \Vert \boldsymbol{\theta}\Vert))\\ \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}\cdot\boldsymbol{\varphi})\end{pmatrix} = \begin{pmatrix} -\boldsymbol{\theta} - (\boldsymbol{\theta}\cdot\boldsymbol{\varphi})\boldsymbol{\theta}/(\lambda \Vert \boldsymbol{\theta}\Vert)\\ \boldsymbol{\varphi} \end{pmatrix}\end{equation}

数值结果为

从动力学角度看优化算法(四):GAN的第三个阶段

数值求解的GAN-QP对应的Dirac GAN的优化轨迹(二维情形),可以发现它确实只是在均衡点(红色点)周围振荡,不收敛

很遗憾,同大多数GAN一样,GAN-QP也是振荡的。

通过上面的分析,我们得到的结论是:目前零中心的WGAN-GP(或者称为WGAN-div)的理论性质最好,只有它是局部收敛的,其余的GAN变体都一定的振荡性,无法真正做到渐近收敛。当然,实际情况可能复杂得多,Dirac GAN的结论只能一定程度上说明问题,带来一个直观感知。

那么,如果Dirac GAN的结论具有代表性的话(即多数GAN实际情况下都难以真正收敛,而是在均衡点附近振荡),我们应该如何缓解这个问题呢?

第一个方案是考虑往(任意GAN的)判别器的权重加入L2正则项。综上所述,零中心的梯度惩罚确实很好,但无奈梯度惩罚太慢,如果不愿意加梯度惩罚,那么可以考虑加入L2正则项。

直观上看,GAN在均衡点附近陷入振荡,达到一种动态平衡(周期解,而不是静态解),而L2正则项会迫使判别器的权重向零移动,从而有可能打破这种平衡。在我自己的GAN实验中,往判别器加入一个轻微的L2正则项,能使得模型收敛更稳定,效果也有轻微提升。(当然,正则项的权重需要根据模型来调整好。)

事实上,缓解这个问题最有力的技巧,当属 权重滑动平均(EMA)

权重滑动平均的基本概念,我们在 《“让Keras更酷一些!”:中间变量、权重滑动和安全生成器》 已经介绍过。对于GAN上的应用,其实不难理解,因为可以观察到,尽管多数GAN最终都是在振荡,但它们振荡中心就是均衡点!所以解决方法很简单, 直接将振荡的轨迹上的点平均一下,得到振荡中心,然后就得到了一个更接近均衡点(也就是更高质量)的解

权重滑动平均带来的提升是非常可观的,如下图比较了有无权重滑动平均时,O-GAN的生成效果图:

从动力学角度看优化算法(四):GAN的第三个阶段

没有权重滑动平均时的随机生成效果

从动力学角度看优化算法(四):GAN的第三个阶段

权重滑动平均的衰减率为0.999时的随机生成效果

从动力学角度看优化算法(四):GAN的第三个阶段

权重滑动平均的衰减率为0.9999时的随机生成效果

可以看到,权重滑动平均几乎给生成效果带来了质的提升。衰减率越大,所得到的生成结果越平滑,但同时会丧失一些细节;衰减率越小,保留的细节越多,但自然也可能保留了额外的噪声。现在主流的GAN都使用了权重滑动平均,衰减率一般为0.999。

顺便说一下,在普通的监督训练模型中,权重滑动平均一般也能带来收敛速度的提升,比如下图是有/无权重滑动平均时,ResNet20模型在cifar10上的训练曲线,全程采用Adam优化器训练,学习率恒为0.001,权重滑动平均的衰减率为0.9999:

从动力学角度看优化算法(四):GAN的第三个阶段

有无EMA时Adam默认学习率训练ResNet20的表现

可以看到,加上权重滑动平均之后,模型以一种非常平稳、快速的姿态收敛到90%+的准确率,而不加的话模型准确率一直在86%左右振荡。这说明类似GAN的振荡现象在深度学习训练时是普遍存在的,通过权重平均可以得到质量更好的模型。

本文主要从动力学角度探讨了GAN的优化问题。跟本系列的其他文章一样,将优化过程视为常微分方程组的求解,对于GAN的优化,这个常微分方程组稍微复杂一些。

分析的过程采用了Dirac GAN的思路,利用单点分布的极简情形对GAN的收敛过程形成快速认识,得到的结论是大多数GAN都无法真正收敛到均衡点,而只是在均衡点附近振荡。而为了缓解这个问题,最有力的方法是权重滑动平均,它对GAN和普通模型训练都有一定帮助。

(本文作图代码参考: https://github.com/bojone/gan/blob/master/gan_numeric.py

转载到请包括本文地址: https://kexue.fm/archives/6583

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (2019, May 03). 《从动力学角度看优化算法(四):GAN的第三个阶段 》[Blog post]. Retrieved from https://kexue.fm/archives/6583


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

プログラミングコンテストチャレンジブック

プログラミングコンテストチャレンジブック

秋葉 拓哉、岩田 陽一、北川 宜稔 / 毎日コミュニケーションズ / 2010-09-11 / JPY 34.44

現在、プログラミングコンテストは数多く開催されています。Google Code Jam、TopCoder、ACM/ICPCなどの名前を聞いたことがある人も少なくないでしょう。本書で扱うのはそれらのような、問題を正確にできるだけ多く解くことを競うプログラミングコンテストです。 プログラミングコンテストは気軽に参加することができます。例えば、Google Code JamやTopCoderはイン......一起来看看 《プログラミングコンテストチャレンジブック》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具