内容简介:本文主要研究一下apache gossip的FailureDetectorincubator-retired-gossip/gossip-base/src/main/java/org/apache/gossip/accrual/FailureDetector.java
序
本文主要研究一下apache gossip的FailureDetector
FailureDetector
incubator-retired-gossip/gossip-base/src/main/java/org/apache/gossip/accrual/FailureDetector.java
public class FailureDetector {
public static final Logger LOGGER = Logger.getLogger(FailureDetector.class);
private final DescriptiveStatistics descriptiveStatistics;
private final long minimumSamples;
private volatile long latestHeartbeatMs = -1;
private final String distribution;
public FailureDetector(long minimumSamples, int windowSize, String distribution) {
descriptiveStatistics = new DescriptiveStatistics(windowSize);
this.minimumSamples = minimumSamples;
this.distribution = distribution;
}
/**
* Updates the statistics based on the delta between the last
* heartbeat and supplied time
*
* @param now the time of the heartbeat in milliseconds
*/
public synchronized void recordHeartbeat(long now) {
if (now <= latestHeartbeatMs) {
return;
}
if (latestHeartbeatMs != -1) {
descriptiveStatistics.addValue(now - latestHeartbeatMs);
}
latestHeartbeatMs = now;
}
public synchronized Double computePhiMeasure(long now) {
if (latestHeartbeatMs == -1 || descriptiveStatistics.getN() < minimumSamples) {
return null;
}
long delta = now - latestHeartbeatMs;
try {
double probability;
if (distribution.equals("normal")) {
double standardDeviation = descriptiveStatistics.getStandardDeviation();
standardDeviation = standardDeviation < 0.1 ? 0.1 : standardDeviation;
probability = new NormalDistributionImpl(descriptiveStatistics.getMean(), standardDeviation).cumulativeProbability(delta);
} else {
probability = new ExponentialDistributionImpl(descriptiveStatistics.getMean()).cumulativeProbability(delta);
}
final double eps = 1e-12;
if (1 - probability < eps) {
probability = 1.0;
}
return -1.0d * Math.log10(1.0d - probability);
} catch (MathException | IllegalArgumentException e) {
LOGGER.debug(e);
return null;
}
}
}
- FailureDetector的构造器接收三个参数,分别是minimumSamples, windowSize, distribution
- 其中minimumSamples表示最少需要多少统计值的时候才真正计算phi值,windowSize表示统计窗口的大小,distribution表示使用哪种分布,normal表示NormalDistribution,其他表示ExponentialDistribution
- FailureDetector使用了apache commons math的DescriptiveStatistics来作为Heartbeat Interval的时间窗口统计;使用了NormalDistribution、ExponentialDistribution来完成正态分布、指数分布的累积分布probability,最后使用公式-1.0d * Math.log10(1.0d - probability)来计算phi值
小结
- The Phi Accrual Failure Detector by Hayashibara et al 论文提出了基于phi值的Accrual Failure Detector方法
- 业界关于Failure Detector的实现大致有两种,一种是以akka为代表的按照论文基于NormalDistribution来计算;一种是以cassandra为代表的基于ExponentialDistribution来计算
- apache gossip的FailureDetector则集大成地同时支持了NormalDistribution及ExponentialDistribution两种实现方式
doc
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
人类思维如何与互联网共同进化
[美] 约翰·布罗克曼 / 付晓光 / 浙江人民出版社 / 2017-3 / 79.90元
➢人类是否因互联网的诞生进入了公平竞争的场域? “黑天鹅事件”频频发生,我们的预测能力是否正在退化? 智人的第四阶段有哪些特征? 全球脑会使人类成为“超级英雄”吗? 虚拟现实技术会不会灭绝人类的真实体验? 还有更多不可预知答案的问题,你将在本书中找到属于自己的答案! ➢ 我们的心智正和互联网发生着永无止境的共振,人类思维会因此产生怎样的进化效应?本书编者约翰•布......一起来看看 《人类思维如何与互联网共同进化》 这本书的介绍吧!