【突破面试】你做的分析,业务早知道了,怎么办?

栏目: 数据库 · 发布时间: 5年前

突破面试系列之一

突破面试系列之二

突破面试系列之三

突破面试系列之四【您在这里】

“你做的分析,业务早知道了,怎么办?”是一个非常困扰数据分析师的问题。面试的时候遇到,会越觉得非常难回答。工作中遇到,气的想拍桌子骂娘。今天我们系统的来讲解一下,如何应对这个问题。

首先,应对这个问题的场景非常重要。如果是在面试时遇到,千万不能拍桌子。面试本身是一个综合性的考验,我们的态度、风度、职业素养也是重要考察项目。所以千万不能着急,大家可以用下边这个话术来应对:

有4种分析结果,会让业务说:我早知道了。

第一种:有数据,无解读

很多新人的数据报告、日报周报、ppt里都有这个问题。比如他有一页ppt叫“销售数据分析”然后下边列个一个销售金额折线图,上边写了一句话:本月销量3.5亿,同比增长30%,环比增长5%。就没有其他内容了。

这岂止是业务早就知道了,这是只要不是个瞎子,都知道了。他只是用文字把图里的数据又讲了一遍而已。只要人不瞎,看一眼图表上标注的数据都能明明白白。销量3.5亿所以呢?同比增长30%所以呢?为什么不是同比35%?为什么不止29%?完全没有任何的解读。这种报告谁看都来气。

第二种:有解读,无常识

很多新人做了解读,但是解读很搞笑。还是销售分析,有的新人一看:诶!这个月销量环比下降搞达70%!好,可算逮住大问题了!于是一通分析猛如虎,得出结论:“因为二月份是春节,所以销量下降”

这不是说废话吗。不要说业务部门早知道了,是个人都知道了啊。春节全国都在放假,我们公司又不是卖鞭炮、礼盒、玩具枪的,当然业绩下降啊。类似的场景还有很多,仅从时间上看,每周周末,3个三天短假和2个7天长假,都会有明显的节日效应。双十一双十二都会有明显的人造节日效应。这些都是业务的常识,如果不了解常识,当然写出来的东西是大家都早知道的。

第三种:有常识,无沟通

单纯知道业务常识是不够的,因为业务形态是可以人为改变的。业绩是做出来的,不是算出来的,所以得和业务沟通,了解他们到底干了什么。可很多初级数据分析师不懂沟通,只会闷头看数据,于是闹各种笑话。比如看到某个产品销量持续下降,又觉得逮住大鱼了,一通分析。送到业务部门那里后引得哄堂大笑:我们早知道了,因为我们最近在做产品退市啊。

类似的情况还有很多。比如业务部门喜欢推某几款产品,结果这几款产品销量一直好,做关联分析,它们是关联度最高的产品;做顾客旅程,它们是所有顾客起点产品;结果某天业务部门改了奖金制度,把这款产品的销售佣金调低了,业务不去推,所有的数据分析全部被推翻。这又是一件人人都知道的事,唯独数据分析师不知道的事。说到底,很多业务动作是无法被数据记录的。单纯的沉迷数据,不和业务沟通,很可能做出看似高深,其实人人都知道的事。

第四种:有沟通,无判断

因为有以上三种情况,所以催生出第四种人:业务说啥他信啥。遇到啥问题都跑去问业务要答案。销售下降,业务说是因为天气不好,他就信了,就真在分析报告上写上“近期天气太热,导致业绩下降。”还美其名曰:和业务深入沟通的结果。这种结论当然是业务早就知道了啊,因为根本就是从人家嘴里出来的。

做数据分析要有自己独立判断能力,和业务沟通与复制业务的话是两码事。数据分析能力人人都可以学习,可为什么还要独立的数据分析部门呢?就是因为业务靠的住,母猪能上树。业务部门永远会说:成绩是我做出来的!至于业绩不好吗,那就是老天爷的问题,是大环境的问题,是马云出手了,是政策有调整,是供应链没跟上,是IT太落后,是数据分析的不准,总之不是我的问题。

比如最简单的:销量不好是因为天气热。这是人话是鬼话,拿出来分析一下吗。从规律看,天气热销售是会有下滑,可为啥有的下滑5%,有的下滑35%?为什么有的天气一凉销量就立马反弹,有的天气凉了销量还不见起色?通过细致的分析,你总能发现业务极力回避或者掩盖的问题。

当然,即使你指出来这些问题,业务也会找理由推辞:“我早知道了,不就是因为那一家门店能力强吗!我之前只是忘了说了”。到了谎言被揭穿的时刻,再补一句“我早知道了”已经毫无杀伤力了。所有人都能看到,这是业务在为逃避责任找托词。即使业务部门不想面对事实,老板也会去思考,如何改变问题的,作为数据分析我们的职责就尽到了。

小结一下:

业务说:我早知道知道了,其实是很难100%避免的。因为这里既有数据分析的原因,也有业务自身的原因。即使我们分析的很到位,业务也可能碍于面子,急于护短,甩出“我早知道了”来搪塞。所以我们无法100%消除“我早知道了”。我们可以100%消除的,是因为我们数据分析师不懂业务,不懂沟通,没有判断导致的“我早知道了”。 用分析替代经验,用计算替代拍脑袋,刺破大家习以为常的惯例,解释人人都这么认为背后的逻辑。 这才是我们的价值。

以上

这段话有点长,可能同学们得练习一下才能掌握。里边讲销售的例子是因为销售最好理解,大家在使用的时候可以自行替换成产品、用户、活动的例子。

解答一下为什么这么讲。首先,这个问题是一个 有罪推定问题 ,所以 不要直接回答 ,直接回答就上钩了。类似“为什么男人都爱嫖”“为什么女人都拜金”,这种问题你一但去解释,就默认了自己是个嫖货,是个拜金女。谁TM这么说的!但是在面试场合,最好不要直接怼回去。这时候可以先树个靶子,告诉大家:我不是这样的人。有这种人,我见过,他们分别是一二三情况。这一点大家切记切记。很多人面试聊到这个话题,跟面试官怼起来,都是因为默认了自己就是做不好分析,总被人嫌弃,结果跟面试官各种互怼。

其次,本身这个问题就有两方面的原因。但在面试中,我们要体现出我们的服务意识和担当精神,所以不要把责任往业务部门态度差、不懂数据上推。要基于我们能做的工作去思考应对办法。至于现实工作中吗,因为业务方态度差、能力弱、恶意甩锅所带来的“我早知道了”非常非常常见。

换一个场景,大家就能立马理解。比如一个病人去看医生,病人对医生说:我打喷嚏,头发热,头晕,我觉得我感冒了。医生看完病,说:是的,你是感冒了。这个时候病人会说:“我早知道了,你看病看的没有价值”吗?

不会。 因为病人自己怀疑自己感冒,和医生确诊感冒是两个概念。至少100种病会导致打喷嚏、头发热,你怎么就知道不是系统性红斑狼疮(SIE)或者是混合性结缔组织病(MCTD)呢?如果病人敢对医生说:“我早知道了,你看病看的没有价值”,没有人会认为是医生不专业,大家只会觉得这个病人是个医闹。

所以,实际工作中解决“我早知道了”的终极办法,就是在沟通中, 让业务方先树假设,然后去验证业务方假设。 本质上看,业务部门的人做了这么多年产品、运营、销售,对于业务的变化有自己的假设判断是很正常的事,要是完全没有假设,那才是企业要完蛋了呢。所以他们当然会说“我早知道了”

但他们不知道的是:

  • 具体假设成不成立?

  • 假设的准确不准确?

  • 是否有多重因素叠加?

  • 每一种因素起多大作用?

这些细节是一定需要计算的。

比如本月业绩不好,业务方说:“是新品不给力造成的”。这句话很随便,但背后的假设是非常多的,如果“新品不给力造成本月业绩不好”这句话成立,那意味着:

  1. 新品带来的业绩足以大到影响大盘

  2. 今年的新品真的较往年表现更差

  3. 今年的新品较往年的差额,等于大盘下跌的数量

  4. 所有渠道的业绩都不行,且所有渠道的新品都不行

看到没,这就是为啥大部分业务所谓的“老夫从业10年,看一眼就知道什么问题”经不起数据推敲的原因。 所谓的业务经验确实有效,但到底有多少效果,是不是还有其他因素,根本不是靠一眼看能看到的,而需要精细的计算和分析。

很有可能新品是不给力,但是还掺杂了渠道在作死,销售在等/靠/要,市场宣传不到位等等因素。总有一个是业务方不知道的,即使业务方能猜到大体上有这些因素,他也猜不到哪一个更重要;即使他能排出优先级,他也细分不到不同区域,不同人群到底该抓哪一点。他需要一台电脑和一堆数据,细细看才行。

总之,有了假设,就能有的放矢。如果假设验证成立,那至少排除了其他因素。如果发现假设不成立,还有其他原因,就更加是找到了所谓“业务不知道”的东西,这是个非常好的办法。至于如何拿假设,可以靠沟通,也可以靠自己对业务的理解,这里有专门的方法,参考{ 数据分析师如何做好沟通 }

这个办法针对医闹也成立。你会发现世界上只有医闹,没有神闹。为啥没人去庙里闹,说菩萨不保佑我,菩萨要赔我钱呢。因为人们去医院前是没有假设、没有心理预期、没有目标的,所以不管医生怎么治,他总以为医生在骗钱,他总在质疑我就是打个喷嚏,为什么要花这么多钱检查。而去庙里,往往已经是病入膏肓,诉求非常明确:我要活命,所以求菩萨发发慈悲。于是便出现了这一奇妙现象

【突破面试】你做的分析,业务早知道了,怎么办?

这也难怪,因为医院治病,不治傻

同样,数据分析救不了那些躺在老经验上颐指气使的人、救不了那些浑水摸鱼想甩锅的人、救不了那些自以为是目中无人的人。我就听过有学员抱怨,说他们领导要求新入职的分析师,“立即马上分析出业务部门100%不知道且决定公司生死的重大问题!”——除了傻逼以外,没有更合适的第二个词来形容这种人。

如果一个人死到临头才去医院,我们不认为是医院技术不行救不过来,而是认为这个人是傻逼,平时不重视身体健康,死到临头怎么救。 同样,数据分析的作用,也不是拿来找出公司死到临头还没有人发现的问题,这样的公司活该倒闭。数据分析更像体检,通过常规指标监控,为业务开展保驾护航,避免错误。 这样公司都不会死到临头,为什么还存在“业务部门100%不知道且决定公司生死的重大问题”如果真的数据分析师发现了“业务部门100%不知道且决定公司生死的重大问题”赶紧跳槽吧,这公司死定了!

当然,你要硬问我,有没有通过数据分析发现业务部门100%不知道且决定公司生死的问题。答案当然是:有,而且这种经验我还很多。10年前我刚入行的时候,企业信息化建设刚刚开始,那时候确实有很多问题,是没有上BI之前根本不知道,上了BI大家恍然大悟的。所以如果硬要说找这种故事的话,就从新立的BI项目里找吧。不过10年已经过去了,企业信息化建设也上了一个等级。现在还抱着这种思维,就真的是老古董了。

让这些还停留在经验时代的古董们说“我早知道了”好了,本身很多业务部门的领导,就是靠关系、靠运气、靠资历而不是靠能力混上来的。激烈的市场竞争会教他们做人。我们可以集中精力服务那些愿意理性思考,有意愿解决问题的人。

不过有些同学会说,老师,我们公司的数据化管理氛围不行,没有哪些部门特别愿意合作,怎么办?答,这个年头,已经没有什么工作能离得开数据分析了,从策划项目到落地执行,里边有一大堆细节可以做。如果公司完全缺乏数据化管理的氛围,可以从一些具体工作入手,帮业务减轻负担,让大家慢慢接受数据分析。具体的切入点如下,我之前刚好有整理过一份项目中所需要的数据分析工作的清单。本篇文章又是很长很长,这个就作为今天的福利派给大家:

【突破面试】你做的分析,业务早知道了,怎么办?

欢迎关注陈老师公众号,持续追剧哦

【突破面试】你做的分析,业务早知道了,怎么办?

备战求职,戳{业务知识一站通},补充业务知识,再也不怕被人说不懂行了。

需要面试指导的,戳{求职宝典},购买后加入学员群,找陈老师1对1指导

【突破面试】你做的分析,业务早知道了,怎么办?

本文由陈老师 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。

转载、引用前需联系作者,并署名作者且注明文章出处。

本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python for Data Analysis

Python for Data Analysis

Wes McKinney / O'Reilly Media / 2012-11-1 / USD 39.99

Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing d......一起来看看 《Python for Data Analysis》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

html转js在线工具
html转js在线工具

html转js在线工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换