内容简介:迭代公式的指数,使用的1+5j,这是个复数,所以是广义mandelbrot集,大家可以自行修改指数,得到其他图形。各种库安装不全的,自行想办法Python 3.6.7。Linux系统:Ubuntu 18.04.2
迭代公式的指数,使用的1+5j,这是个复数,所以是广义mandelbrot集,大家可以自行修改指数,得到其他图形。各种库安装不全的,自行想办法
Python 3.6.7。
Linux系统:Ubuntu 18.04.2
完整代码:
#encoding=utf-8 import numpy as np import pylab as pl import time from matplotlib import cm from math import log escape_radius = 10 iter_num = 20 def draw_mandelbrot2(cx, cy, d, N=600): global mandelbrot """ 绘制点(cx, cy)附近正负d的范围的Mandelbrot """ x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j] c = x + y*1j smooth_mand = np.frompyfunc(smooth_iter_point,1,1)(c).astype(np.float) pl.gca().set_axis_off() pl.imshow(smooth_mand, cmap=cm.Blues_r, extent=[x0,x1,y1,y0]) pl.show() def smooth_iter_point(c): z = c #赋初值 d = 1+2j #这里,把幂运算的指数,设定成复数1+2j, 就是广义mandelbrot集合, d=2就是标准mandelbrot集,d=3就是三阶的 for i in range(1, iter_num): if abs(z)>escape_radius: break z = z**d+c # **运算符是幂运算 #下面是重新计算迭代次数,可以获取连续的迭代次数(即正规化) absz = abs(z) #复数的模 if absz > 2.0: mu = i - log(log(abs(z),2),2) else: mu = i return mu # 返回正规化的迭代次数 def draw_mandelbrot(cx, cy, d, N=800): """ 绘制点(cx, cy)附近正负d的范围的Mandelbrot """ global mandelbrot x0, x1, y0, y1 = cx-d, cx+d, cy-d, cy+d y, x = np.ogrid[y0:y1:N*1j, x0:x1:N*1j] c = x + y*1j # 创建X,Y轴的坐标数组 ix, iy = np.mgrid[0:N,0:N] # 创建保存mandelbrot图的二维数组,缺省值为最大迭代次数 mandelbrot = np.ones(c.shape, dtype=np.int)*100 # 将数组都变成一维的 ix.shape = -1 iy.shape = -1 c.shape = -1 z = c.copy() # 从c开始迭代,因此开始的迭代次数为1 start = time.clock() for i in xrange(1,100): # 进行一次迭代 z *= z z += c # 找到所有结果逃逸了的点 tmp = np.abs(z) > 2.0 # 将这些逃逸点的迭代次数赋值给mandelbrot图 mandelbrot[ix[tmp], iy[tmp]] = i # 找到所有没有逃逸的点 np.logical_not(tmp, tmp) # 更新ix, iy, c, z只包含没有逃逸的点 ix,iy,c,z = ix[tmp], iy[tmp], c[tmp],z[tmp] if len(z) == 0: break print ("time="),time.clock() - start pl.imshow(mandelbrot, cmap=cm.Blues_r, extent=[x0,x1,y1,y0]) pl.gca().set_axis_off() pl.show() #鼠标点击触发执行的函数 def on_press(event): global g_size print (event) print (dir(event)) newx = event.xdata newy = event.ydata print (newx) print (newy) #不合理的鼠标点击,直接返回,不绘制 if newx == None or newy == None or event.dblclick == True: return None #不合理的鼠标点击,直接返回,不绘制 if event.button == 1: #button ==1 代表鼠标左键按下, 是放大图像 g_size /= 2 elif event.button == 3: #button == 3 代表鼠标右键按下, 是缩小图像 g_size *= 2 else: return None print (g_size) draw_mandelbrot2(newx,newy,g_size) fig, ax = pl.subplots(1) g_size = 2.5 #注册鼠标事件 fig.canvas.mpl_connect('button_press_event', on_press) #初始绘制一个图 draw_mandelbrot2(0,0,g_size)
效果图如下:
更多Python相关信息见 Python 专题页面 https://www.linuxidc.com/topicnews.aspx?tid=17
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158414.htm
以上所述就是小编给大家介绍的《使用Python的matplotlib绘制广义mandelbrot集》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- CREATE2 在广义状态通道中的使用
- 广义相对论与深度学习能够碰撞出什么火花?高通AI Research最新研发成果一览
- 周志华揭牌英特尔-南大联合研究中心:探索DNN与GPU之外的「广义深度学习」
- ViewGroup 默认顺序绘制子 View,如何修改?什么场景需要修改绘制顺序?
- Shader 绘制基础图形
- css绘制特殊图形
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Python语言程序设计
(美)Y. Daniel Liang / 机械工业出版社 / 2013-3 / 79.00元
本书保持了Liang博士系列丛书中一贯的、标志性的教与学的哲学:以实例教,由实践学。书中采用了他所提出的已经经过实践检验的“基础先行”的方法,即在定义类之前,首先使用清晰简明的语言介绍基本程序设计概念,如选择语句、循环和函数;在介绍面向对象程序设计和GUI编程之前,首先介绍基本逻辑和程序设计概念。书中除了给出一些以游戏和数学为主的典型实例外,还在每章的开始使用简单的图形给出一两个例子,以激发学生的......一起来看看 《Python语言程序设计》 这本书的介绍吧!
RGB转16进制工具
RGB HEX 互转工具
MD5 加密
MD5 加密工具