内容简介:序列化数据即每个样本和它之前的样本存在关联,前一数据和后一个数据有顺序关系。深度学习中有一个重要的分支是专门用来处理这样的数据的——循环神经网络。循环神经网络广泛应用在自然语言处理领域(NLP),今天我们带你从一个实际的例子出发,介绍循环神经网络一个重要的改进算法模型-LSTM。本文章不对LSTM的原理进行深入,想详细了解LSTM可以参考这篇我们使用76748首古诗词作为数据集,数据集
LSTM 介绍
序列化数据即每个样本和它之前的样本存在关联,前一数据和后一个数据有顺序关系。深度学习中有一个重要的分支是专门用来处理这样的数据的——循环神经网络。循环神经网络广泛应用在自然语言处理领域(NLP),今天我们带你从一个实际的例子出发,介绍循环神经网络一个重要的改进算法模型-LSTM。本文章不对LSTM的原理进行深入,想详细了解LSTM可以参考这篇 [译] 理解 LSTM 网络 。本文重点从古诗词自动生成的实例出发,一步一步带你从数据处理到模型搭建,再到训练出古诗词生成模型,最后实现从古诗词自动生成新春祝福诗词。
数据处理
我们使用76748首古诗词作为数据集,数据集 下载链接 ,原始的古诗词的存储形式如下:
我们可以看到原始的古诗词是文本符号的形式,无法直接进行机器学习,所以我们第一步需要把文本信息转换为数据形式,这种转换方式就叫词嵌入(word embedding),我们采用一种常用的词嵌套(word embedding)算法-Word2vec对古诗词进行编码。关于Word2Vec这里不详细讲解,感兴趣可以参考 [NLP] 秒懂词向量Word2vec的本质 。在词嵌套过程中,为了避免最终的分类数过于庞大,可以选择去掉出现频率较小的字,比如可以去掉只出现过一次的字。Word2vec算法经过训练后会产生一个模型文件,我们就可以利用这个模型文件对古诗词文本进行词嵌套编码。
经过第一步的处理已经把古诗词词语转换为可以机器学习建模的数字形式,因为我们采用LSTM算法进行古诗词生成,所以还需要构建输入到输出的映射处理。例如:
“[长河落日圆]”作为train_data,而相应的train_label就是“长河落日圆]]”,也就是
“[”->“长”,“长”->“河”,“河”->“落”,“落”->“日”,“日”->“圆”,“圆”->“]”,“]”->“]”,这样子先后顺序一一对相。这也是循环神经网络的一个重要的特征。
这里的“[”和“]”是开始符和结束符,用于生成古诗的开始与结束标记。
总结一下数据处理的步骤:
- 读取原始的古诗词文本,统计出所有不同的字,使用 Word2Vec 算法进行对应编码;
- 对于每首诗,将每个字、标点都转换为字典中对应的编号,构成神经网络的输入数据 train_data;
- 将输入数据左移动构成输出标签 train_label;
经过数据处理后我们得到以下数据文件:
- poems_edge_split.txt:原始古诗词文件,按行排列,每行为一首诗词;
- vectors_poem.bin:利用 Word2Vec训练好的词向量模型,以</s>开头,按词频排列,去除低频词;
- poem_ids.txt:按输入输出关系映射处理之后的语料库文件;
- rhyme_words.txt: 押韵词存储,用于押韵诗的生成;
在提供的源码中已经提供了以上四个数据文件放在data文件夹下,数据处理代码见 data_loader.py 文件, 源码链接
模型构建及训练
这里我们使用2层的LSTM框架,每层有128个隐藏层节点,我们使用tensorflow.nn模块库来定义网络结构层,其中RNNcell是tensorflow中实现RNN的基本单元,是一个抽象类,在实际应用中多用RNNcell的实现子类BasicRNNCell或者BasicLSTMCell,BasicGRUCell;如果需要构建多层的RNN,在TensorFlow中,可以使用tf.nn.rnn_cell.MultiRNNCell函数对RNNCell进行堆叠。模型网络的第一层要对输入数据进行 embedding,可以理解为数据的维度变换,经过两层LSTM后,接着softMax得到一个在全字典上的输出概率。
模型网络结构如下:
定义网络的类的程序代码如下:
class CharRNNLM(object): def __init__(self, is_training, batch_size, vocab_size, w2v_model, hidden_size, max_grad_norm, embedding_size, num_layers, learning_rate, cell_type, dropout=0.0, input_dropout=0.0, infer=False): self.batch_size = batch_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.max_grad_norm = max_grad_norm self.num_layers = num_layers self.embedding_size = embedding_size self.cell_type = cell_type self.dropout = dropout self.input_dropout = input_dropout self.w2v_model = w2v_model if embedding_size <= 0: self.input_size = vocab_size self.input_dropout = 0.0 else: self.input_size = embedding_size # 输入和输入定义 self.input_data = tf.placeholder(tf.int64, [self.batch_size, self.num_unrollings], name='inputs') self.targets = tf.placeholder(tf.int64, [self.batch_size, self.num_unrollings], name='targets') # 根据定义选择不同的循环神经网络内核单元 if self.cell_type == 'rnn': cell_fn = tf.nn.rnn_cell.BasicRNNCell elif self.cell_type == 'lstm': cell_fn = tf.nn.rnn_cell.LSTMCell elif self.cell_type == 'gru': cell_fn = tf.nn.rnn_cell.GRUCell params = dict() if self.cell_type == 'lstm': params['forget_bias'] = 1.0 cell = cell_fn(self.hidden_size, **params) cells = [cell] for i in range(self.num_layers-1): higher_layer_cell = cell_fn(self.hidden_size, **params) cells.append(higher_layer_cell) # 训练时是否进行 Dropout if is_training and self.dropout > 0: cells = [tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=1.0-self.dropout) for cell in cells] # 对lstm层进行堆叠 multi_cell = tf.nn.rnn_cell.MultiRNNCell(cells) # 定义网络模型初始状态 with tf.name_scope('initial_state'): self.zero_state = multi_cell.zero_state(self.batch_size, tf.float32) if self.cell_type == 'rnn' or self.cell_type == 'gru': self.initial_state = tuple( [tf.placeholder(tf.float32, [self.batch_size, multi_cell.state_size[idx]], 'initial_state_'+str(idx+1)) for idx in range(self.num_layers)]) elif self.cell_type == 'lstm': self.initial_state = tuple( [tf.nn.rnn_cell.LSTMStateTuple( tf.placeholder(tf.float32, [self.batch_size, multi_cell.state_size[idx][0]], 'initial_lstm_state_'+str(idx+1)), tf.placeholder(tf.float32, [self.batch_size, multi_cell.state_size[idx][1]], 'initial_lstm_state_'+str(idx+1))) for idx in range(self.num_layers)]) # 定义 embedding 层 with tf.name_scope('embedding_layer'): if embedding_size > 0: # self.embedding = tf.get_variable('embedding', [self.vocab_size, self.embedding_size]) self.embedding = tf.get_variable("word_embeddings", initializer=self.w2v_model.vectors.astype(np.float32)) else: self.embedding = tf.constant(np.eye(self.vocab_size), dtype=tf.float32) inputs = tf.nn.embedding_lookup(self.embedding, self.input_data) if is_training and self.input_dropout > 0: inputs = tf.nn.dropout(inputs, 1-self.input_dropout) # 创建每个切分通道网络层 with tf.name_scope('slice_inputs'): sliced_inputs = [tf.squeeze(input_, [1]) for input_ in tf.split( axis = 1, num_or_size_splits = self.num_unrollings, value = inputs)] outputs, final_state = tf.nn.static_rnn( cell = multi_cell, inputs = sliced_inputs, initial_state=self.initial_state) self.final_state = final_state # 数据变换层,把经过循环神经网络的数据拉伸降维 with tf.name_scope('flatten_outputs'): flat_outputs = tf.reshape(tf.concat(axis = 1, values = outputs), [-1, hidden_size]) with tf.name_scope('flatten_targets'): flat_targets = tf.reshape(tf.concat(axis = 1, values = self.targets), [-1]) # 定义 softmax 输出层 with tf.variable_scope('softmax') as sm_vs: softmax_w = tf.get_variable('softmax_w', [hidden_size, vocab_size]) softmax_b = tf.get_variable('softmax_b', [vocab_size]) self.logits = tf.matmul(flat_outputs, softmax_w) + softmax_b self.probs = tf.nn.softmax(self.logits) # 定义 loss 损失函数 with tf.name_scope('loss'): loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits = self.logits, labels = flat_targets) self.mean_loss = tf.reduce_mean(loss) # tensorBoard 损失函数可视化 with tf.name_scope('loss_montor'): count = tf.Variable(1.0, name='count') sum_mean_loss = tf.Variable(1.0, name='sum_mean_loss') self.reset_loss_monitor = tf.group(sum_mean_loss.assign(0.0), count.assign(0.0), name='reset_loss_monitor') self.update_loss_monitor = tf.group(sum_mean_loss.assign(sum_mean_loss+self.mean_loss), count.assign(count+1), name='update_loss_monitor') with tf.control_dependencies([self.update_loss_monitor]): self.average_loss = sum_mean_loss / count self.ppl = tf.exp(self.average_loss) average_loss_summary = tf.summary.scalar( name = 'average loss', tensor = self.average_loss) ppl_summary = tf.summary.scalar( name = 'perplexity', tensor = self.ppl) self.summaries = tf.summary.merge( inputs = [average_loss_summary, ppl_summary], name='loss_monitor') self.global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0.0)) self.learning_rate = tf.placeholder(tf.float32, [], name='learning_rate') if is_training: tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.mean_loss, tvars), self.max_grad_norm) optimizer = tf.train.AdamOptimizer(self.learning_rate) self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step)
训练时可以定义batch_size的值,是否进行dropout,为了结果的多样性,训练时在softmax输出层每次可以选择topK概率的字符作为输出。训练完成后可以使用tensorboard 对网络结构和训练过程可视化展示。这里推荐大家一个在线人工智能建模平台 momodel.cn ,带有完整的 Python 和机器学习框架运行环境,并且有免费的GPU可以使用,大家可以训练的时候可以在这个平台上试一下。训练部分的代码和训练好的模型见 链接 。
诗词生成
调用前面训练好的模型我们就可以实现一个古诗词的应用了,我这里利用 Mo平台 实现了藏头诗和藏子诗自动生成的功能,运行的效果如下:
新年快到了,赶紧利用算法作诗,给亲朋好友送去“最聪明”的祝福吧!
PC端查看完整代码参考文章:
https://www.jianshu.com/p/9dc...
https://zhuanlan.zhihu.com/p/...
https://github.com/norybaby/poet————————————————————————————————————Mo (网址: http://momodel.cn )是一个支持 Python 的人工智能建模平台,能帮助你快速开发训练并部署 AI 应用。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
新零售:低价高效的数据赋能之路
刘润 / 中信出版集团 / 2018-9 / 65.00元
小米新零售,如何做到20倍坪效? 天猫小店,如何利用大数据助力线下零售? 盒马鲜生,为什么坚持必须用App才能买单? 名创优品,实体小店在电商冲击下,如何拥抱春天? 新零售的未来在何方?什么样的思维模式才可应对? 新零售,不是商界大佬的专用名词,它就在我们生活触手可及的各个角落——小到便利店的酸奶,大到京东商城的冰箱,都蕴含着消费者、货物、经营场所三者共同作用的经济逻......一起来看看 《新零售:低价高效的数据赋能之路》 这本书的介绍吧!