聊聊hazelcast的PhiAccrualFailureDetector

栏目: 后端 · 发布时间: 5年前

内容简介:本文主要研究一下hazelcast的PhiAccrualFailureDetectorhazelcast-3.12-sources.jar!/com/hazelcast/internal/cluster/fd/FailureDetector.javahazelcast-3.12-sources.jar!/com/hazelcast/internal/cluster/fd/PhiAccrualFailureDetector.java

本文主要研究一下hazelcast的PhiAccrualFailureDetector

FailureDetector

hazelcast-3.12-sources.jar!/com/hazelcast/internal/cluster/fd/FailureDetector.java

/**
 * Failure detector tracks heartbeats of a member and decides liveness/availability of the member.
 */
public interface FailureDetector {

    /**
     * Notifies this failure detector about received heartbeat message from the tracked member.
     *
     * @param timestamp timestamp of heartbeat message in milliseconds
     */
    void heartbeat(long timestamp);

    /**
     * Returns true if the tracked member is considered as alive/available.
     * @param timestamp timestamp in milliseconds
     * @return true if the member is alive
     */
    boolean isAlive(long timestamp);

    /**
     * Returns the last heartbeat timestamp for the tracked member.
     * @return heartbeat timestamp in milliseconds
     */
    long lastHeartbeat();

    /**
     * Returns suspicion level about the tracked member. Returned value is mostly implementation dependent.
     * <code>0</code> indicates no suspicion at all.
     * @param timestamp timestamp in milliseconds
     * @return suspicion level
     */
    double suspicionLevel(long timestamp);
}
  • FailureDetector接口定义了heartbeat、isAlive、lastHeartbeat、suspicionLevel方法

PhiAccrualFailureDetector

hazelcast-3.12-sources.jar!/com/hazelcast/internal/cluster/fd/PhiAccrualFailureDetector.java

/**
 * Port of Akka's PhiAccrualFailureDetector.scala
 * <p>
 * Implementation of 'The Phi Accrual Failure Detector' by Hayashibara et al. as defined in their paper.
 * <p>
 * The suspicion level of failure is given by a value called φ (phi).
 * The basic idea of the φ failure detector is to express the value of φ on a scale that
 * is dynamically adjusted to reflect current network conditions. A configurable
 * threshold is used to decide if <code>φ</code> is considered to be a failure.
 * <p>
 * The value of <code>φ</code> is calculated as:
 * <p>
 * <code>
 * <pre>
 * φ = -log10(1 - F(timeSinceLastHeartbeat)
 * </pre>
 * </code>
 * where F is the cumulative distribution function of a normal distribution with mean
 * and standard deviation estimated from historical heartbeat inter-arrival times.
 */
public class PhiAccrualFailureDetector implements FailureDetector {

    static final long NO_HEARTBEAT_TIMESTAMP = -1;

    private final double threshold;
    private final double minStdDeviationMillis;
    private final long acceptableHeartbeatPauseMillis;

    private final HeartbeatHistory heartbeatHistory;
    private volatile long lastHeartbeatMillis = NO_HEARTBEAT_TIMESTAMP;

    /**
     * @param threshold                      A low threshold is prone to generate many wrong suspicions but ensures
     *                                       a quick detection in the event of a real crash. Conversely, a high threshold
     *                                       generates fewer mistakes but needs more time to detect actual crashes
     * @param maxSampleSize                  Number of samples to use for calculation of mean and standard deviation of
     *                                       inter-arrival times.
     * @param minStdDeviationMillis          Minimum standard deviation to use for the normal distribution used when
     *                                       calculating phi. Too low standard deviation might result in too much sensitivity
     *                                       for sudden, but normal, deviations in heartbeat inter arrival times.
     * @param acceptableHeartbeatPauseMillis Duration corresponding to number of potentially lost/delayed
     *                                       heartbeats that will be accepted before considering it to be an anomaly.
     *                                       This margin is important to be able to survive sudden, occasional, pauses
     *                                       in heartbeat arrivals, due to for example garbage collect or network drop.
     * @param firstHeartbeatEstimateMillis   Bootstrap the stats with heartbeats that corresponds to this duration,
     *                                       with a with rather high standard deviation (since environment is unknown
     *                                       in the beginning)
     */
    public PhiAccrualFailureDetector(double threshold, int maxSampleSize, double minStdDeviationMillis,
            long acceptableHeartbeatPauseMillis, long firstHeartbeatEstimateMillis) {

        this.threshold = checkPositive(threshold, "Threshold must be positive: " + threshold);
        this.minStdDeviationMillis = checkPositive(minStdDeviationMillis, "Minimum standard deviation must be positive: "
                + minStdDeviationMillis);

        this.acceptableHeartbeatPauseMillis = checkNotNegative(acceptableHeartbeatPauseMillis,
                "Acceptable heartbeat pause millis must be >= 0: " + acceptableHeartbeatPauseMillis);

        checkPositive(firstHeartbeatEstimateMillis, "First heartbeat value must be > 0: " + firstHeartbeatEstimateMillis);

        heartbeatHistory = new HeartbeatHistory(maxSampleSize);
        firstHeartbeat(firstHeartbeatEstimateMillis);
    }

    // guess statistics for first heartbeat,
    // important so that connections with only one heartbeat becomes unavailable
    // bootstrap with 2 entries with rather high standard deviation
    @SuppressWarnings("checkstyle:magicnumber")
    private void firstHeartbeat(long firstHeartbeatEstimateMillis) {
        long stdDeviationMillis = firstHeartbeatEstimateMillis / 4;
        heartbeatHistory.add(firstHeartbeatEstimateMillis - stdDeviationMillis);
        heartbeatHistory.add(firstHeartbeatEstimateMillis + stdDeviationMillis);
    }

    private double ensureValidStdDeviation(double stdDeviationMillis) {
        return Math.max(stdDeviationMillis, minStdDeviationMillis);
    }

    /**
     * The suspicion level of the accrual failure detector.
     *
     * If a connection does not have any records in failure detector then it is
     * considered healthy.
     */
    private double phi(long timestampMillis) {
        long timeDiffMillis;
        double meanMillis;
        double stdDeviationMillis;

        synchronized (heartbeatHistory) {
            long lastTimestampMillis = lastHeartbeatMillis;
            if (lastTimestampMillis == NO_HEARTBEAT_TIMESTAMP) {
                return 0.0;
            }

            timeDiffMillis = timestampMillis - lastTimestampMillis;
            meanMillis = heartbeatHistory.mean();
            stdDeviationMillis = ensureValidStdDeviation(heartbeatHistory.stdDeviation());
        }

        return phi(timeDiffMillis, meanMillis + acceptableHeartbeatPauseMillis, stdDeviationMillis);
    }

    /**
     * Calculation of phi, derived from the Cumulative distribution function for
     * N(mean, stdDeviation) normal distribution, given by
     * 1.0 / (1.0 + math.exp(-y * (1.5976 + 0.070566 * y * y)))
     * where y = (x - mean) / standard_deviation
     * This is an approximation defined in β Mathematics Handbook (Logistic approximation).
     * Error is 0.00014 at +- 3.16
     * The calculated value is equivalent to -log10(1 - CDF(y))
     */
    @SuppressWarnings("checkstyle:magicnumber")
    private static double phi(long timeDiffMillis, double meanMillis, double stdDeviationMillis) {
        double y = (timeDiffMillis - meanMillis) / stdDeviationMillis;
        double e = Math.exp(-y * (1.5976 + 0.070566 * y * y));
        if (timeDiffMillis > meanMillis) {
            return -Math.log10(e / (1.0 + e));
        } else {
            return -Math.log10(1.0 - 1.0 / (1.0 + e));
        }
    }

    @Override
    public boolean isAlive(long timestampMillis) {
        double phi = phi(timestampMillis);
        return phi < threshold;
    }

    @Override
    public void heartbeat(long timestampMillis) {
        synchronized (heartbeatHistory) {
            long lastTimestampMillis = getAndSetLastHeartbeat(timestampMillis);
            if (lastTimestampMillis == NO_HEARTBEAT_TIMESTAMP) {
                return;
            }

            if (isAlive(timestampMillis)) {
                heartbeatHistory.add(timestampMillis - lastTimestampMillis);
            }
        }
    }

    private long getAndSetLastHeartbeat(long timestampMillis) {
        long lastTimestampMillis = lastHeartbeatMillis;
        lastHeartbeatMillis = timestampMillis;
        return lastTimestampMillis;
    }

    @Override
    public long lastHeartbeat() {
        return lastHeartbeatMillis;
    }

    @Override
    public double suspicionLevel(long timestamp) {
        return phi(timestamp);
    }

    /**
     * Holds the heartbeat statistics for a specific member.
     * It is capped by the number of samples specified in `maxSampleSize`.
     *
     * The stats (mean, variance, stdDeviation) are not defined for
     * for empty HeartbeatHistory, i.e. throws ArithmeticException.
     */
    private static class HeartbeatHistory {
        private final int maxSampleSize;
        private final LinkedList<Long> intervals = new LinkedList<Long>();
        private long intervalSum;
        private long squaredIntervalSum;

        HeartbeatHistory(int maxSampleSize) {
            if (maxSampleSize < 1) {
                throw new IllegalArgumentException("Sample size must be >= 1 : " + maxSampleSize);
            }
            this.maxSampleSize = maxSampleSize;
        }

        double mean() {
            return (double) intervalSum / intervals.size();
        }

        double variance() {
            double mean = mean();
            return ((double) squaredIntervalSum / intervals.size()) - (mean * mean);
        }

        double stdDeviation() {
            return Math.sqrt(variance());
        }

        void add(long interval) {
            if (intervals.size() >= maxSampleSize) {
                dropOldest();
            }
            intervals.add(interval);
            intervalSum += interval;
            squaredIntervalSum += pow2(interval);
        }

        private void dropOldest() {
            long dropped = intervals.pollFirst();
            intervalSum -= dropped;
            squaredIntervalSum -= pow2(dropped);
        }

        private static long pow2(long x) {
            return x * x;
        }
    }
}
  • PhiAccrualFailureDetector实现了FailureDetector接口,其实现是akka的 PhiAccrualFailureDetector.scalajava 版本
  • φ (phi)为指定值被认定为failure的suspicion level,其计算公式为φ = -log10(1 - CDF(timeSinceLastHeartbeat),其中CDF函数为normal distribution的cumulative distribution function,即正态分布的累积分布函数
  • phi方法使用了β Mathematics Handbook中定义的Logistic approximation公式来近似计算CDF(y)( Error is 0.00014 at +- 3.16 ),即CDF(y)=1.0 / (1.0 + math.exp(-y (1.5976 + 0.070566 y * y))),其中y = (x - mean) / standard_deviation

CDF(y)在x > mean的时候( e<1 )将公式转换为φ = -Math.log10(e / (1.0 + e));在x <= mean的时候( e>=1 )的采用公式-Math.log10(1.0 - 1.0 / (1.0 + e)),目前还不清楚为何这样区分计算

hazelcast中默认为10

小结

  • FailureDetector接口定义了heartbeat、isAlive、lastHeartbeat、suspicionLevel方法;PhiAccrualFailureDetector实现了FailureDetector接口,其实现是akka的 PhiAccrualFailureDetector.scala 的java版本
  • φ (phi)为指定值被认定为failure的suspicion level,其计算公式为φ = -log10(1 - CDF(timeSinceLastHeartbeat),其中CDF函数为normal distribution的cumulative distribution function,即正态分布的累积分布函数
  • akka的实现中,其phi方法使用了β Mathematics Handbook中定义的Logistic approximation公式来近似计算CDF(y)( Error is 0.00014 at +- 3.16 ),即CDF(y)=1.0 / (1.0 + math.exp(-y (1.5976 + 0.070566 y * y))),其中y = (x - mean) / standard_deviation;另外也增加了acceptableHeartbeatPauseMillis参数,即在最后计算phi值时传入的meanMillis为meanMillis + acceptableHeartbeatPauseMillis
  • isAlive方法会计算该timestampMillis的phi值,然后与threshold值( hazelcast中默认为10 )判断,小于threshold值才判断为live
  • heartbeat方法会先判断该timestampMillis是否live,是的话,再将timestampMillis - lastTimestampMillis值添加到heartbeatHistory

doc


以上所述就是小编给大家介绍的《聊聊hazelcast的PhiAccrualFailureDetector》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective STL中文版

Effective STL中文版

[美] Scott Meyers / 潘爱民、陈铭、邹开红 / 电子工业出版社 / 2013-5 / 59.00元

《Effective STL中文版:50条有效使用STL的经验》是EffectiveC++的第3卷,被评为“值得所有C++程序员阅读的C++书籍之一”。《Effective STL中文版:50条有效使用STL的经验》详细讲述了使用STL的50条指导原则,并提供了透彻的分析和深刻的实例,实用性极强,是C++程序员必备的基础书籍。C++的标准模板库(STL)是革命性的,要用好STL并不容易。《Effe......一起来看看 《Effective STL中文版》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具