内容简介:作者 | 程序员小灰
作者 | 程序员小灰
本文经授权转载自 程序员 小灰(ID:chengxuyuanxiaohui)
————— 第二天 —————
小灰的思路如下:
第一步,利用迪杰斯特拉算法的距离表,求出从顶点A出发,到其他各个顶点的最短距离:
第二步,继续使用迪杰斯特拉算法,求出从顶点B出发,到其他各个顶点的最短距离。
第三步,从顶点C出发,到各个顶点的最短距离。
第四步,从顶点D出发......
.......
就像这样,一直遍历到顶点G。
这个思路的时间复杂度是多少呢?
假如图中有n个顶点,如果不考虑堆优化,一次迪杰斯特拉算法的时间复杂度是O(n^2)。所以,把每一个顶点都计算一遍,总的时间复杂度是O(n^3)。
举一个栗子:
上图的顶点A和顶点C没有直接相连的边,它们之间的直接距离是无穷大。
如果以B作为“中继顶点”,此时A到C的最短路径就是A-B-C,最短距离是3+2=5。
再举一个栗子:
上图的顶点A和顶点C直接相连,距离是6。但是存在一条“迂回”路径A-B-C,距离是3+2=5<6。
所以,经过中继顶点B,从A到C的最短距离可以是5。
下面我们来看一看Floyd算法的详细步骤。
1.要实现Floyd算法,首先需要构建带权图的邻接矩阵:
在邻接矩阵当中,每一个数字代表着从某个顶点到另一个顶点的直接距离,这个距离是没有涉及到任何中继顶点的。
2.此时假定只允许以顶点A作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
B和C之间的距离原本是无穷大,此时以A为中继,距离缩短为AB距离+AC距离=
5+2=7。
更新对应矩阵元素(橙色区域代表顶点A到其他顶点的临时距离):
3.接下来以顶点A、B作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和D之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BD距离=5+1=6。
A和E之间的距离原本是无穷大,此时以B为中继,距离缩短为AB距离+BE距离=5+6=11。
更新对应矩阵元素(橙色区域代表顶点B到其他顶点的临时距离):
4.接下来以顶点A、B、C作为中继顶点,那么各顶点之间的距离会变成什么样子呢?
A和F之间的距离原本是无穷大,此时以C为中继,距离缩短为AC距离+CF距离=2+8=10。
更新对应矩阵元素(橙色区域代表顶点C到其他顶点的临时距离):
以此类推,我们不断引入新的中继顶点,不断刷新矩阵中的临时距离。
最终,当所有顶点都可以作为中继顶点时,我们的距离矩阵更新如下:
此时,矩阵中每一个元素,都对应着某顶点到另一个顶点的最短距离。
为什么这么说呢?让我们回顾一下动态规划的两大要素:
问题的初始状态
问题的状态转移方程式
对于寻找图的所有顶点之间距离的问题,初始状态就是顶点之间的直接距离,也就是邻接矩阵。
而问题的状态转移方程式又是什么呢?
假设新引入的中继顶点是n,那么:
顶点i 到 顶点j 的新距离 = Min(顶点i 到 顶点j 的旧距离,顶点i 到 顶点n 的距离+顶点n 到 顶点j 的距离)
【END】
作为码一代,想教码二代却无从下手:
听说少儿编程很火,可它有哪些好处呢?
孩子多大开始学习比较好呢?又该如何学习呢?
最新的编程教育政策又有哪些呢?
下面给大家介绍CSDN新成员: 极客宝宝(ID: geek_baby)
戳他了解更多↓↓↓
热 文推 荐
☞ 前端代码的整洁之道 | 技术头条
☞ 她说:为啥程序员都特想要机械键盘?这答案我服!
System.out.println("点个在看吧!"); console.log("点个在看吧!"); print("点个在看吧!"); printf("点个在看吧!\n"); cout << "点个在看吧!" << endl; Console.WriteLine("点个在看吧!"); Response.Write("点个在看吧!"); alert("点个在看吧!") echo "点个在看吧!"
你点的每个“在看”,我都认真当成了喜欢
以上所述就是小编给大家介绍的《漫画:如何求图的最短路径? | 技术头条》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 漫画:数据结构之最短路径 Dijkstra 算法的优化 | 技术头条
- HDFS短路读详解
- 动态规划之最短路径和
- 单源最短路径:Dijkstra算法(堆优化)
- 【你该懂一点Javascript算法系列】之单源最短路径 - Dijkstra算法
- ArangoDB 3.5:流事务 API、蒙面数据、搜索性能大幅提升、最短路径功能
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数据驱动:从方法到实践
桑文锋 / 电子工业出版社 / 2018-3 / 49
本书是从理论到实践的全面且细致的企业数据驱动指南,从作者的百度大数据工作说起,完整还原其从零到一构建百度用户行为大数据处理平台经历。详解大数据本质、理念与现状,围绕数据驱动四环节——采集、建模、分析、指标,深入浅出地讲述企业如何将数据驱动方案落地,并指出数据驱动的价值在于“数据驱动决策”、“数据驱动产品智能”。最后通过互联网金融、电子商务、企业服务、零售四大行业实践,从需求梳理、事件指标设计、数据......一起来看看 《数据驱动:从方法到实践》 这本书的介绍吧!