特征值分解和奇异值分解

栏目: 数据库 · 发布时间: 6年前

内容简介:特征向量:就是变换以后仍然保持相同方向的向量一般来说,理解矩阵变换可以有两种方式,一种是矩阵的列看出变换后的基向量来表示:第二种是脱离固定坐标系,以特征值和特征向量的方式来理解它:
特征值分解和奇异值分解

特征向量:就是变换以后仍然保持相同方向的向量

特征值分解和奇异值分解

一般来说,理解矩阵变换可以有两种方式,一种是矩阵的列看出变换后的基向量来表示:

特征值分解和奇异值分解

第二种是脱离固定坐标系,以特征值和特征向量的方式来理解它:

特征值分解和奇异值分解

求解特征值和特征向量

  1. 特征向量的代数上含义是:将矩阵乘法转换为数乘操作;

  2. 特征向量的几何含义是:特征向量通过方阵A变换只进行伸缩,而保持特征向量的方向不变。

其中 λ 可以由常数值转化为矩阵形式 所以式子变为: 代入具体例子

当v为零向量时,等式一定成立,但我们需要求非零解v。假设为为下图的黄线:

特征值分解和奇异值分解

当 行列式为0时,空间被压缩成一条直线时

特征值分解和奇异值分解

假设 所以求解步骤为:

特征值分解和奇异值分解

求得λ代入到式子中可以得到特征向量。

特征基和对角矩阵

现在讨论基向量和特征向量完全相同时的情况:

这样的矩阵叫做对角矩阵,且对角线的值就是特征值:

这种矩阵有一个优势,就是计算十分简便:

特征值分解和奇异值分解

一般来说对角矩阵实际情况中很难出现,所以我们需要构造这样的矩阵,假设矩阵有好多个特征向量,可以构成特征空间。 然后使用基变换矩阵

特征值分解和奇异值分解

这种新的特征矩阵,对角线就是特征值,且一定是对角矩阵。

特征值分解和奇异值分解

特征值分解

特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么

在机器学习特征提取中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大,PCA降维就是基于这种思路。

奇异值

特征值及特征值分解都是针对方阵而言,现实世界中,我们看到的大部分矩阵不是方阵,比如每道数据有M个点,一共采集了N道数据,这样就形成了一个N*M的矩阵,那么怎样才能像方阵一样提取出它的特征,以及特征的重要性。

奇异值分解就是来干这个事情的。奇异值相当于方阵中的特征值,奇异值分解相当于方阵中的特征值分解。

奇异值分解SVD

特征值分解和奇异值分解
特征值分解和奇异值分解

U 矩阵(左奇异矩阵)的列向量分别是u1,u2( 的特征向量);

Σ是除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值

V矩阵(右奇异矩阵)的列向量分别是v1,v2( 的特征向量)。

V表示了原始域的标准正交基,U表示经过M 变换后的co-domain的标准正交基,Σ表示了V 中的向量与u中相对应向量之间的关系,即协方差,位于对角线上的元素被称为奇异值。

特征值分解和奇异值分解
特征值分解和奇异值分解
特征值分解和奇异值分解
特征值分解和奇异值分解
特征值分解和奇异值分解

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算复杂性

计算复杂性

阿罗拉 巴拉克 / 骆吉洲 / 机械工业出版社 / 2016-1-1 / 129元

《计算复杂性的现代方法》是一部将所有有关复杂度知识理论集于一体的教程。将最新进展和经典结果结合起来,是一部很难得的研究生入门级教程。既是相关科研人员的一部很好的参考书,也是自学人员很难得的一本很好自学教程。本书一开始引入该领域的最基本知识,然后逐步深入,介绍更多深层次的结果,每章末都附有练习。对复杂度感兴趣的人士,物理学家,数学家以及科研人员这本书都是相当受益。一起来看看 《计算复杂性》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具