内容简介:作者:四川大学在读研究生
作者: 李誉辉
四川大学在读研究生
简介
对于多个变量之间的相关关系,常常使用相关关系图来可视化,R自带有 pairs()
函数,
可以画相关关系图,但是比较复杂,我们先介绍基于 ggplot2
的 GGally
包。
pairs()
函数。
1.ggmatrix()
ggmatrix()
可以将多个 ggplot2
绘图对象,按照矩阵进行排列。
1.1
矩阵第1列
1library(ggplot2)
2data(tips, package = "reshape")
3
4head(tips)
5
6g1 <- ggplot(tips, aes(x = total_bill, fill = sex)) +
7 geom_density(show.legend = FALSE)
8
9g2 <- ggplot(tips, aes(x = total_bill, fill = sex)) +
10 geom_histogram(position = position_stack(), show.legend = FALSE) +
11 facet_grid(rows = vars(time))# 以time变量行分面
12
13g3 <- ggplot(tips, aes(x = total_bill, y = tip, color = sex)) +
14 geom_point(show.legend = FALSE)
15
1.2
矩阵第2列
1library(ggplot2)
2
3g4 <- ggplot(tips, aes(x = time, y = total_bill, fill = sex)) +
4 geom_boxplot(show.legend = FALSE)
5
6g5 <- ggplot(tips, aes(x = time, fill = sex)) +
7 geom_bar(position = position_stack(), show.legend = FALSE)
8
9g6 <- ggplot(tips, aes(x = tip, fill = sex)) +
10 geom_histogram(position = position_stack(), show.legend = FALSE) +
11 coord_flip() +
12 facet_grid(cols = vars(time))
13
1.3
矩阵第3列
1library(ggplot2)
2library(dplyr)
3library(tibble)
4
5# 第一个图
6text_1 <- round(cor(tips$total_bill, tips$tip), 3)
7tips_female <- as.tibble(tips) %>% filter(sex == "Female") %>% as.data.frame()
8tips_male <- as.tibble(tips) %>% filter(sex == "Male") %>% as.data.frame()
9text_2 <- round(cor(tips_female$total_bill, tips_female$tip), 3)
10text_3 <- round(cor(tips_male$total_bill, tips_male$tip), 3)
11mytext <- c(text_1, text_2, text_3)
12mytext <- paste0(c("Cor", "Female", "Male"), ":", mytext)
13mytext <- data.frame(text = mytext,
14 x = 5,
15 y = c(6, 4, 2),
16 stringsAsFactors = FALSE)
17
18g7 <- ggplot(data = mytext[-1, ], aes(x = x, y = y, label = text, color = text)) +
19 geom_text(show.legend = F) +
20 geom_text(data = mytext[1,], aes(x = x, y = y, label = text),
21 color = "black")
22
23rm(text_1, tips_female, tips_male, text_2, text_3, mytext)
24
25# 第2个图
26g8 <- ggplot(tips, aes(x = time, y = tip, fill = sex)) +
27 geom_boxplot(show.legend = FALSE) +
28 coord_flip()
29
30# 第3个图
31g9 <- ggplot(tips, aes(x = tip, fill = sex)) +
32 geom_density(show.legend = FALSE)
33
1.4
customLayout合并图形
1library(customLayout)
2# 创建画布
3mylay <- lay_new(
4 mat = matrix(1:9, ncol = 3))
5
6plot_list <- list(g1, g2, g3, g4, g5, g6, g7, g8, g9)
7
8lay_grid(plot_list, mylay) # ggplot2绘图列表传参,传递到画布mylay
9
10rm(g1, g2, g3, g4, g5, g6, g7, g8, g9, mylay)
1.5
ggmatrix合并图形
1library(GGally)
2
3gg_m <- ggmatrix(
4 plots = plot_list, # 绘图对象列表
5 nrow = 3, ncol = 3, # 行数和列数
6 xAxisLabels = c("Total Bill", "Time of Day", "Tip"),
7 yAxisLabels = c("Total Bill", "Time of Day", "Tip"),
8 byrow = FALSE, # 按列排
9 title = "ggmatrix合并图形"
10)
11
12# 添加主题
13gg_m + theme_bw()
14
15# 提取子集,只能提取其中一个
16gg_m[1,2]
17
18rm(plot_list, gg_m)
2.ggpairs()
GGally
通过添加几个函数来扩展 ggplot2
,以降低 geom
与转换数据组合的复杂性。
其中一些功能包括配对图矩阵,散点图矩阵,平行坐标图,生存图,以及绘制网络的几个函数。
2.1
语法及关键参数
语法:
1ggpairs(data, mapping = NULL, columns = 1:ncol(data), title = NULL,
2 upper = list(continuous = "cor", combo = "box_no_facet", discrete =
3 "facetbar", na = "na"), lower = list(continuous = "points", combo =
4 "facethist", discrete = "facetbar", na = "na"), diag = list(continuous =
5 "densityDiag", discrete = "barDiag", na = "naDiag"), params = NULL, ...,
6 xlab = NULL, ylab = NULL, axisLabels = c("show", "internal", "none"),
7 columnLabels = colnames(data[columns]), labeller = "label_value",
8 switch = NULL, showStrips = NULL, legend = NULL,
9 cardinality_threshold = 15, progress = NULL,
10 legends = stop("deprecated"))
关键参数:
-
mapping
, 表示要叠加到x,y上的aes()
映射变量,这里是全局映射。 -
column
, 表示选择要绘图的列,可以用变量索引值指定,也可以用变量名指定。 -
columnLabels
, 指定矩阵列名称。 -
title
,xlab
,ylab
, 表示指定标题和坐标轴名称。 -
lower
,upper
,表示指定下三角和上三角的plot类型,列表传参。 -
diag
,表示指定对角线的plot类型,列表传参。 -
axisLabels
, 指定变量名称的显示位置,默认显示在外侧,"internal"
则显示在内测,"none"
则不显示。 -
labeller
, 表示指定分面标签, -
switch
, 表示指定分面标签位置,与ggplot2:facet_grid
中一致,默认在顶部和右侧,若
switch = "x"
,则显示在底部和右侧,若switch = "y"
则显示在顶部和左侧,若
swith = "both"
则显示在底部和左侧。 -
showStrips
, 布尔运算决定是否显示plots的条带,默认NULL只显示顶部和右侧的条带。TRUE
则显示所有的条带,FALSE
则不显示所有的条带。 -
legend
, 默认NULL
不显示,可以通过theme(legend.position = "bottom")
调整图例的位置。有3种指定图例类型的方式:
-
长度为2的数字向量,表示给矩阵所在的行和列增加图例。如
c(2,3)
表示第2行第3列增加图例。 -
长度为1的数字向量,表示根据矩阵的顺序,给相应的panel添加图例,
如
legend=3
表示给1行第3列增加图例。 -
预先使用
grab_legend()
提取ggplot2
对象的图例,然后指定给legend
。 -
cardinality_threshold
, 表示允许因子变量的最大因子水平数量,默认最多15个因子水平。NULL
则因子变量不会绘图。 -
progress
, 表示是否显示进度条,默认NULL
当超过15个plots时显示进度条,对绘图结果没有任何影响,不需要关注。
TRUE
则显示进度条,FALSE
则不显示进度条,也可用
ggmatrix_progress()
生成进度条,然后指定。
plot类型:
通过5个参数控制plot类型: continuous
, combo
, discret
, na
, mapping
-
continuous
, 表示如果变量x,y都是连续的,应该是什么plot。 -
对于
lower
和upper
参数:可以是
"point"
,"smooth"
,"smooth_loess"
,"density"
,"cor"
,"blank"
。 -
对于
diag
参数: 可以是"densityDiag"
,"barDiag"
,"blankDiag"
-
combo
, 表示如果变量一个连续,一个离散,应该是什么plot。只能用于lower和upper不能用于diag。
离散变量只能计数,不能映射坐标,所以可能存在 坐标翻转 。
-
可以是
"box"
,"box_no_facet"
,"dot"
,"dot_no_facet"
,"facethist"
,"facetdensity"
,"denstrip"
,"blank"
-
discrete
, 表示2个变量都是离散的,应该是什么plot。 -
对于
upper
和lower
参数:可以是:
"facetbar"
,"ratio"
,"blank"
。 -
对于
diag
参数: 可以是"barDiag"
,"blankDiag"
。 -
na
, 表示指定变量为na
的情况, -
对于
lower
和upper
,可以是:"na"
,"blank"
。 -
对于
diag
,可以是"naDiag"
,"blankDiag"
。 -
mapping
, 表示aes()
映射。若指定mapping
参数,则叠加到x,y上去。 -
默认
lower = list(continuous = "point", combo = "facetthist", discrete = "facetbar")
-
默认
upper = list(continuous = "cor", combo = "box_no_facet", discrete = "box")
-
默认
diag = list(continuous = "density", discrete = "barDiag")
2.2
column及columnLabels
1library(GGally)
2library(ggplot2)
3
4ggpairs(tips, mapping = aes(color = sex),
5 columns = c("total_bill", "time", "tip"),
6 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
7 title = "变量名指定column")
8
9ggpairs(tips, mapping = aes(color = sex),
10 columns = c(1, 6, 2),
11 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
12 title = "索引值指定column")
2.3
lower,upper, diag
2.3.1 自定义 lower
一个离散变量, lower
的 discrete
参数无效。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "tip"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
4 lower = list(
5 continuous = "cor",
6 combo = "dot_no_facet" # 没有2个离散变量,不需要discrete参数
7 ),
8 upper = list(
9 continuous = "blank",
10 combo = "blank"
11 ),
12 diag = list(
13 continuous = "blankDiag",
14 discrete = "blankDiag"
15 ),
16 title = "自定义lower\n(lower$continuous = \"cor\", lower$combo = \"dot_no_facet\")"
17)
两个离散变量, lower
的 continuous
参数无效。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "sex"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Sex(离散变量)"),
4 lower = list(
5 combo = "dot_no_facet", #
6 discrete = "blank"
7 ),
8 upper = list(
9 combo = "blank",
10 discrete = "blank"
11 ),
12 diag = list(
13 continuous = "blankDiag",
14 discrete = "blankDiag"
15 ),
16 title = "自定义lower\n(lower$combo = \"dot_no_facet\",lower$discrete = \"blank\" )"
17)
2.3.2 自定义 upper
一个离散变量, upper
的 discrete
参数无效。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "tip"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
4 upper = list(
5 continuous = "density",
6 combo = "dot_no_facet" # 没有2个离散变量,不需要discrete参数
7 ),
8 lower = list(
9 continuous = "blank",
10 combo = "blank"
11 ),
12 diag = list(
13 continuous = "blankDiag",
14 discrete = "blankDiag"
15 ),
16 title = "自定义upper\n(upper$continuous = \"density\", upper$combo = \"dot_no_facet\")"
17)
两个离散变量, upper
的 continuous
参数无效。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "sex"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Sex(离散变量)"),
4 upper = list(
5 combo = "dot_no_facet", #
6 discrete = "ratio"
7 ),
8 lower = list(
9 combo = "blank",
10 discrete = "blank"
11 ),
12 diag = list(
13 continuous = "blankDiag",
14 discrete = "blankDiag"
15 ),
16 title = "自定义upper\n(lower$combo = \"dot_no_facet\",upper$discrete = \"ratio\" )"
17)
2.3.3 自定义 diag
diag
没有 combo
参数。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "tip"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
4 diag = list(
5 continuous = "barDiag",
6 discrete = "blankDiag" #
7 ),
8 lower = list(
9 continuous = "blank",
10 combo = "blank"
11 ),
12 upper = list(
13 continuous = "blank",
14 combo = "blank"
15 ),
16 title = "自定义diag\n(diag$continuous = \"barDiag\", diag$discrete = \"blankDiag\")"
17)
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "sex"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Sex(离散变量)"),
4 diag = list(
5 continuous = "barDiag", #
6 discrete = "barDiag"
7 ),
8 lower = list(
9 discrete = "blank",
10 combo = "blank"
11 ),
12 upper = list(
13 discrete = "blank",
14 combo = "blank"
15 ),
16 title = "自定义diag\n(lower$continuous = \"barDiag\",diag$barDiag = \"barDiag\" )"
17)
2.3.4 mapping
参数
1library(ggplot2)
2library(GGally)
3data(tips, package = "reshape")
4
5ggpairs(tips,
6 columns = c("total_bill", "time", "tip"),
7 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
8 title = "无mapping"
9)
1ggpairs(tips,
2 columns = c("total_bill", "time", "tip"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Tip(连续变量)"),
4 lower = list(mapping = aes(color = time)),
5 title = "自定义lower(lower$mapping = \"time\")" # 局部映射
6)
1ggpairs(tips,
2 columns = c("total_bill", "tip", "size"),
3 columnLabels = c("Total_Bill(连续变量)", "Tip(连续变量)", "Size(连续变量)"),
4 lower = list(
5 continuous = "cor",
6 mapping = aes(color = sex)
7 ),
8 upper = list(
9 continuous = "cor",
10 mapping = aes(color = smoker)
11 ),
12 diag = list(
13 continuous = "barDiag",
14 mapping = aes(color = time)
15 ),
16 title = "自定义lower,upper,diag\n(下三角颜色为sex,上三角颜色为smoker,对角颜色为time)"
17)
2.3.5 同时指定 lower
, upper
, diag
2个连续变量,1个离散变量。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "tip", "time"),
3 columnLabels = c("Total_Bill(连续变量)", "Tip(连续变量)", "Time(离散变量)"),
4 lower = list(
5 continuous = "cor",
6 combo = "dot_no_facet" # 没有2个离散变量,不需要discrete参数
7 ),
8 upper = list(
9 continuous = "density",
10 combo = "dot_no_facet" # 没有2个离散变量,不需要discrete参数
11 ),
12 diag = list(
13 continuous = "barDiag",
14 discrete = "blankDiag" #
15 ),
16 title = "自定义lower,upper,diag(两个连续变量,一个离散变量)"
17)
1个连续变量,2个离散变量。
1ggpairs(tips, mapping = aes(color = day),
2 columns = c("total_bill", "time", "sex"),
3 columnLabels = c("Total_Bill(连续变量)", "Time(离散变量)", "Sex(离散变量)"),
4 lower = list(
5 combo = "dot_no_facet", #
6 discrete = "blank"
7 ),
8 upper = list(
9 combo = "dot_no_facet", #
10 discrete = "ratio"
11 ),
12 diag = list(
13 continuous = "barDiag", #
14 discrete = "barDiag"
15 ),
16 title = "自定义lower,upper,diag(一个连续变量,两个离散变量)"
17)
——————————————
往期精彩:
以上所述就是小编给大家介绍的《GGally与pairs相关关系图_史上最全(一)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 统计关系学习综述(转载),贝叶斯逻辑程序相关内容,超高难度(part1)
- 框架与RTTI的关系,RTTI与反射之间的关系
- 如何用循环关系网络机智地解决数独类关系推理任务?
- 【mybatis xml】数据层框架应用--Mybatis(三)关系映射之一对一关系映射
- Hibernate 关系映射整理
- Hibernate 关系映射整理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
淘宝天猫店是如何运营的
贾真 / 电子工业出版社 / 2017-5 / 49.8
《淘宝天猫店是如何运营的——网店从0到千万实操手册》是由天猫行业Top10卖家、电商圈知名讲师贾真写就的一本运营干货书籍。《淘宝天猫店是如何运营的——网店从0到千万实操手册》的最大卖点就是作者把自己运营店铺的经验系统地总结出来,把碎片化的“干货”形成一个系统的知识体系。句句易懂,读后受益! 现在网上能看到的电商经验,大多是碎片化知识,零散不成体系,其实很难系统地给卖家提供帮助。《淘宝天猫店是......一起来看看 《淘宝天猫店是如何运营的》 这本书的介绍吧!