内容简介:本篇为鸡生蛋系列第二篇文章主要讲一下inputmanager相关的,即驱动把数据上报到用户空间后,用户空间到应用这么个流程,在上一遍讲内核的input子系统时候,我们采取的反向分析,即由驱动出发,最后到input core,input子系统架构这么个由点到面的分析方法,
本篇为鸡生蛋系列第二篇文章
- Linux input系统数据上报流程 https://segmentfault.com/a/11...
- Android InputManager分析
主要讲一下inputmanager相关的,即驱动把数据上报到用户空间后,用户空间到应用这么个流程,
在上一遍讲内核的input子系统时候,我们采取的反向分析,即由驱动出发,最后到input core,input子系统架构这么个由点到面的分析方法,
那分析inputmanager是否可采用这种方法如何呢?实际上,对于Android上层(Native framework/framework, c++/java)的分析,我一般
采用的是由上而下的分析,即从其初始化(main,构造,onFirstRef())开始, 通常在其初始化时候,会重一些很重要的上下层的连接,如果由下往上看,会麻烦点,
然后再结合实例,看看他的数据流向是如何的,或者一些重要的API, 例如对于Audio来说,可以结合播放音乐流程来分析整个系统架构。
简单说来,input到应用的流程为
EventHub监控并读取/dev/input下数据 --> 给InputReader 加工处理 --> 到InputDispacher --> 找到focused窗口并通过input channel发出去
参考文档:
十分钟了解Android触摸事件原理(InputManagerService)
https://www.jianshu.com/p/f05...
android控件系统:输入事件在控件树中的传递
https://blog.csdn.net/renshug...
https://blog.csdn.net/renshug...
InputManagerService分析一:IMS的启动与事件传递
https://blog.csdn.net/lilian0...相关代码目录:
Android 9.0 http://androidxref.com/9.0.0_r3/
frameworks/base/services/java/com/android/server/SystemServer.java
frameworks/base/services/core/java/com/android/server/input/InputManagerService.java
frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cpp
frameworks/native/services/inputflinger/
1.1 初始化
frameworks/base/services/java/com/android/server/SystemServer.java startOtherServices() { inputManager = new InputManagerService(context); .... wm = WindowManagerService.main(context, inputManager, ServiceManager.addService(Context.INPUT_SERVICE, inputManager, /* allowIsolated= */ false, DUMP_FLAG_PRIORITY_CRITICAL); .... inputManager.setWindowManagerCallbacks(wm.getInputMonitor()); inputManager.start(); ...... }
IMS(InputManagerService)的初始化,是从SystemServer开始的,通过搜索代码(如上),我们可以看到构造了一个实例,
并做为参数传给了WMS, 由此我们也猜想,会和WMS有紧密的关系,然后
IMS设置了setWindowManagerCallbacks()并通过start()函数启动了,
SystemServer里有关IMS的就这么几个地方,我们再看下构造和start()具体的流程,与WMS的关联不分析。
frameworks/base/services/core/java/com/android/server/input/InputManagerService.java // Pointer to native input manager service object. private final long mPtr; public InputManagerService(Context context) { this.mContext = context; this.mHandler = new InputManagerHandler(DisplayThread.get().getLooper()); // config_useDevInputEventForAudioJack配置为true, 耳机事件可通过input上报 mUseDevInputEventForAudioJack = context.getResources().getBoolean(R.bool.config_useDevInputEventForAudioJack); ...... mPtr = nativeInit(this, mContext, mHandler.getLooper().getQueue()); ...... LocalServices.addService(InputManagerInternal.class, new LocalService()); } public void start() { Slog.i(TAG, "Starting input manager"); nativeStart(mPtr); .... }
InputManagerService构造和start()主要也是调到JNI的 nativeInit() nativeStart().
frameworks/base/services/core/jni/com_android_server_input_InputManagerService.cpp static jlong nativeInit(JNIEnv* env, jclass /* clazz */, jobject serviceObj, jobject contextObj, jobject messageQueueObj) { .... NativeInputManager* im = new NativeInputManager(contextObj, serviceObj, messageQueue->getLooper()); im->incStrong(0); return reinterpret_cast<jlong>(im); } static void nativeStart(JNIEnv* env, jclass /* clazz */, jlong ptr) { ...... status_t result = im->getInputManager()->start(); ...... }
nativeInit()又构造了一个 NativeInputManager(),该类可认为是上层 JAVA 和下层EventHub InputManager的桥梁,
nativeStart()通过 NativeInputManager最终调到 InputManager 的 start()方法
NativeInputManager::NativeInputManager(jobject contextObj, jobject serviceObj, const sp<Looper>& looper) : mLooper(looper), mInteractive(true) { ...... sp<EventHub> eventHub = new EventHub(); mInputManager = new InputManager(eventHub, this, this); }
NativeInputManager()的构造又new了 EventHub 和 InputManager , 其中
eventHub做为参数传给了 InputManager()
frameworks/native/services/inputflinger/EventHub.cpp EventHub::EventHub(void) : ......{ acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); mEpollFd = epoll_create(EPOLL_SIZE_HINT); // epoll机制 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); mINotifyFd = inotify_init(); // inotify机制 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); // 利用inotify监控 DEVICE_PATH(/dev/input)创建和删除 ...... eventItem.events = EPOLLIN; eventItem.data.u32 = EPOLL_ID_INOTIFY; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); // 将inotify的fd添加到Epoll监控中 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); int wakeFds[2]; result = pipe(wakeFds); //读写pipe, InputReader有事件时唤醒 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeReadPipeFd = wakeFds[0]; mWakeWritePipeFd = wakeFds[1]; ...... result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); ...... }
EventHub相当于一个集线器,把底层的USB, TOUCH,鼠标等事件统一收集上来,再给上层。
其构造函数当中利用inotify机制监控"/dev/input" 目录下设备的创建和删除,这样当有设备变更时就可以收到通知了,
构造函数也创建了所需要的mEpollFd,这个作为IO多路复用的机制,不清楚的可以查下如何使用,
构造里将mINotifyFd添加到了epoll里,在后续input设备创建的时候,也会把input设备的fd添加进去,这样当有数据或者设备变化时,
EventHub就可获取这些事件,进一步处理。
构造还创建了两个pipe,作为wakeup的读端和写端,当InputReader.cpp有事件(配置变更,monitor, 超时请求等)唤醒EventHub处理。
InputManager::InputManager( const sp<EventHubInterface>& eventHub, const sp<InputReaderPolicyInterface>& readerPolicy, const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) { mDispatcher = new InputDispatcher(dispatcherPolicy); mReader = new InputReader(eventHub, readerPolicy, mDispatcher); // eventHub又传给了 InputReader,最终他们俩是紧密联系在一起的 initialize(); // eventHub又传给了 } void InputManager::initialize() { mReaderThread = new InputReaderThread(mReader); mDispatcherThread = new InputDispatcherThread(mDispatcher); }
InputManager(),创建了InputDispatcher和InputReader实例并与对应的InputDispatcherThread InputReaderThread 线程关联
具体的我们不往下跟了,有兴趣的可以再看看,
至此,初始化流程告一段落。
InputManagerService.java的 start方法,最终到InputManager::start(),
status_t InputManager::start() { status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY); ...... result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY); ...... }
start() 方法目的就是让这两个线程跑起来,这样就可以不断的获取,处理消息了。
1.2 小结
startOtherServices()/SystemServer.java + new InputManagerService(context) --> nativeInit(...) --> new NativeInputManager(...) + + new EventHub() --> inotify监控/dev/input + epoll + wake pipe + + new InputManager(eventHub,...) + + new InputDispatcher() + + new InputReader(eventHub,...) + + initialize() + + new InputReaderThread(mReader) + + new InputDispatcherThread(mDispatcher) + + ^ + + + inputManager.start() --> nativeStart(mPtr) --> im->getInputManager()->start() --> mDispatcherThread->run() mReaderThread->run()
2. 读取数据
bool InputReaderThread::threadLoop() { mReader->loopOnce(); return true; } bool InputDispatcherThread::threadLoop() { mDispatcher->dispatchOnce(); return true; }
上一小节讲到IMS通过start()函数,最终让InputReaderThread InputDispatcherThread两个线程跑起来了,
线程跑起来后,他们因为返回值为true, 所以他们会不断的loop, 即不断的读取,分发,读取,分发……
看上面几行代码,觉得整个过程很简单清晰,然而当我们继续跟下去看细节的时候,你能 哇~~哇~~哇~~
这一节我们看看 mReader->loopOnce(), 下一节继续看Dispatcher过程
void InputReader::loopOnce() { ...... size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); ...... if (count) { processEventsLocked(mEventBuffer, count); } ......// 通知dispather分发 mQueuedListener->flush(); }
InputReader的loopOnce()通过
EventHub getEvents()
获得元数据,然后通过
processEventsLocked()
进一步的处理,
然后再通过
mQueuedListener->flush()
通知InputDispatcher有数据了,该处理了
2.1 InputReader::loopOnce()之 EventHub->getEvents()
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { ...... for (;;) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); // Reopen input devices if needed. ...... // Report any devices that had last been added/removed. while (mClosingDevices) { ...... } // 扫描设备 if (mNeedToScanDevices) { mNeedToScanDevices = false; scanDevicesLocked(); mNeedToSendFinishedDeviceScan = true; } ...... // Grab the next input event. bool deviceChanged = false; while (mPendingEventIndex < mPendingEventCount) { const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; ...... ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); ...... Device* device = mDevices.valueAt(deviceIndex); if (eventItem.events & EPOLLIN) { //epoll事件 // 读取数据 int32_t readSize = read(device->fd, readBuffer, sizeof(struct input_event) * capacity); ...... event->deviceId = deviceId; // <-- 设备id event->type = iev.type; event->code = iev.code; event->value = iev.value; event += 1; ...... // Return now if we have collected any events or if we were explicitly awoken. if (event != buffer || awoken) { break; } // Poll for events. Mind the wake lock dance! ...... int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); ...... return event - buffer; }
getEvents()会检查是否需要扫描设备,如果需要的话,则会建立设备KeyedVector向量表,
之后若有数据到来则通过read()函数读取数据, 返回RawEvent* buffer给processEventsLocked()进行下一步处理,
若啥事都没有通过epoll_wait()阻塞等待。
本来数据的读取(read())比较简单, 这里只列下设备扫描流程,作为个人笔记,有兴趣的可以看下
EventHub::scanDevicesLocked() --> scanDirLocked(DEVICE_PATH) "/dev/input" --> while处理 openDeviceLocked() --> status_t EventHub::openDeviceLocked(const char *devicePath) { ...... int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK); ......//一大堆ioctl的信息获取 if(ioctl(......)) { ......//生成唯一的 deviceId,和device, 做为mdevices的 key, value. 以后的操作会常用到这个deviceId // Allocate device. (The device object takes ownership of the fd at this point.) int32_t deviceId = mNextDeviceId++; Device* device = new Device(fd, deviceId, String8(devicePath), identifier); ...... // Load the configuration file for the device. // 加载这个设备的 idc(Input Device Configuration)配置文件 loadConfigurationLocked(device); ......//能力获取和分类 // Figure out the kinds of events the device reports. ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); ...... // 设备分类 device->classes |= ......; ...... //加入到epoll当中 if (registerDeviceForEpollLocked(device) != OK) { ...... configureFd(device); ......//加入mDevices并更新 mOpeningDevices 链表 addDeviceLocked(device); return OK; }
// 对于我们的触屏来说class为 // See if this is a touch pad. // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_POSITION_X, device->absBitmask) && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { ...... if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; } ......//之后还会加载虚拟key. // Configure virtual keys. if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { // Load the virtual keys for the touch screen, if any. // We do this now so that we can make sure to load the keymap if necessary. status_t status = loadVirtualKeyMapLocked(device); status_t EventHub::loadVirtualKeyMapLocked(Device* device) { // The virtual key map is supplied by the kernel as a system board property file. ...... path.append("/sys/board_properties/virtualkeys."); path.append(device->identifier.name); ...... return VirtualKeyMap::load(path, &device->virtualKeyMap);
addDeviceLocked()即添加到
EventHub.h KeyedVector<int32_t, Device*> mDevices;
并更新链表mOpeningDevices
void EventHub::addDeviceLocked(Device* device) { mDevices.add(device->id, device); device->next = mOpeningDevices; mOpeningDevices = device; }
另外要注意一点的是,在scanDevicesLocked()时候也会创建虚拟键盘。
void EventHub::scanDevicesLocked() { status_t res = scanDirLocked(DEVICE_PATH); ....... // 创建虚拟键盘 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { createVirtualKeyboardLocked(); } }
2.2 InputReader::loopOnce()之 processEventsLocked
mEventHub->getEvents(), 反回元数据后,传给 processEventsLocked()进一步处理
元数据的定义如下,主要记录了时间,设备id, type, code, value.
struct RawEvent { nsecs_t when; int32_t deviceId; int32_t type; int32_t code; int32_t value; };
其中的deviceId起了个连接作用,用于标识eventhub和iputreader中的设备,
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) { for (const RawEvent* rawEvent = rawEvents; count;) { int32_t type = rawEvent->type; size_t batchSize = 1; if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { int32_t deviceId = rawEvent->deviceId; ...... processEventsForDeviceLocked(deviceId, rawEvent, batchSize); ...... case EventHubInterface::DEVICE_ADDED: addDeviceLocked(rawEvent->when, rawEvent->deviceId); case EventHubInterface::DEVICE_REMOVED: ...... case EventHubInterface::FINISHED_DEVICE_SCAN: ...... } }
processEventsLocked()函数有个
processEventsForDeviceLocked() 对于对数据的处理,
另外还根据type, 处理了对设备添加移除,扫描的处理,
大家就有点奇怪了,咦,eventhub扫描设备的时候,不是有处理添加设备吗?
咋这儿又有添加设备了? 而且看代码,两者都有个mDevices变量
EventHub.h KeyedVector<int32_t, Device*> mDevices; InputReader.h KeyedVector<int32_t, InputDevice*> mDevices;
上面可看到两者value类型不同,他们之间的key 即deviceID是相同的,
其实我个人认为EventHub中的Device为设备的本身属性,是下层设备的实例化,
而InputReader中的InputDevice为更高层次的抽象,主要用于往上层处理数据,
addDeviceLocked()过程中还会根据input设备的不同属性设置不同的Mapper事件转换器。
我们先看下processEventsForDeviceLocked()过程:
void InputReader::processEventsForDeviceLocked(int32_t deviceId, const RawEvent* rawEvents, size_t count) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); ...... InputDevice* device = mDevices.valueAt(deviceIndex); ...... device->process(rawEvents, count); } void InputDevice::process(const RawEvent* rawEvents, size_t count) { // Process all of the events in order for each mapper. ...... // 可能会有多个mapper size_t numMappers = mMappers.size(); for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) { ...... for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->process(rawEvent); } ...... }
processEventsForDeviceLocked() --> device->process() --> mapper->process()
最终数据的处理也是通过mapper来处理的,所以我们还得看下mapper咋添加的
Mapper添加
mapper的添加是根据分类来添加的, 以触屏为例
frameworks/native/services/inputflinger/InputReader.cpp InputReader::processEventsLocked() --> addDeviceLocked() --> createDeviceLocked() --> // Touchscreens and touchpad devices. if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { device->addMapper(new MultiTouchInputMapper(device)); } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { device->addMapper(new SingleTouchInputMapper(device)); }
所以触屏的最后数据处理函数会调到
MultiTouchInputMapper的process函数不再详细看
void MultiTouchInputMapper::process(const RawEvent* rawEvent) { TouchInputMapper::process(rawEvent); mMultiTouchMotionAccumulator.process(rawEvent); }
2.3 InputReader数据如何到InputDispatcher的?
InputReader::loopOnce() 数据处理完后便调用 mQueuedListener->flush() 通知 InputDispatcher 该处理数据了。
void QueuedInputListener::flush() { size_t count = mArgsQueue.size(); for (size_t i = 0; i < count; i++) { NotifyArgs* args = mArgsQueue[i]; args->notify(mInnerListener); delete args; } mArgsQueue.clear(); }
flush()方法即把mArgsQueue Vector一个个取出来,然后再调用notify()方法,
那我们肯定想要知道
1. 数据是咋压入 mArgsQueue的?
2. notify() 后续流程咋把数据给到 InputDispatcher
1.
void QueuedInputListener::notifyConfigurationChanged( const NotifyConfigurationChangedArgs* args) { mArgsQueue.push(new NotifyConfigurationChangedArgs(*args)); } void QueuedInputListener::notifyKey(const NotifyKeyArgs* args) { mArgsQueue.push(new NotifyKeyArgs(*args)); } void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) { mArgsQueue.push(new NotifyMotionArgs(*args)); } void QueuedInputListener::notifySwitch(const NotifySwitchArgs* args) { mArgsQueue.push(new NotifySwitchArgs(*args)); } void QueuedInputListener::notifyDeviceReset(const NotifyDeviceResetArgs* args) { mArgsQueue.push(new NotifyDeviceResetArgs(*args)); }
在QueuedInputListener中看到 notifyConfigurationChanged() notifyKey() notifyMotion() notifySwitch() notifyDeviceReset()
当有配置变化或事件时,都会新创建个notify args实例(都继承自NotifyArgs),然后push到mArgsQueue,
以触屏事件为例,push流程为:
TouchInputMapper::sync() --> processRawTouches() --> cookAndDispatch() --> dispatchTouches() --> dispatchMotion() --> NotifyMotionArgs args(...) getListener()->notifyMotion(&args) --> frameworks/native/services/inputflinger/InputListener.cpp void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) { mArgsQueue.push(new NotifyMotionArgs(*args)); }
- InputReader::loopOnce() --> QueuedInputListener::flush() --> for args->notify(mInnerListener);
以触屏NotifyMotionArgs为例,其调用到
void NotifyMotionArgs::notify(const sp<InputListenerInterface>& listener) const { listener->notifyMotion(this); }
注意其 listener 为 InputDispatcher (InputDispatcher 继承自 InputDispatcherInterface class InputDispatcher : public InputDispatcherInterface),
frameworks/native/services/inputflinger/InputManager.cpp mDispatcher = new InputDispatcher(dispatcherPolicy); mReader = new InputReader(..., ..., mDispatcher); --> InputReader::InputReader(..., ..., ...listener) --> new QueuedInputListener(listener);
所以最终就调到了
InputDispatcher::notifyMotion()
void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) { ......// 合法性检查 if (!validateMotionEvent(args->action, args->actionButton, args->pointerCount, args->pointerProperties)) { ......// 预处理 mPolicy->interceptMotionBeforeQueueing(args->eventTime, /*byref*/ policyFlags); ...... if (shouldSendMotionToInputFilterLocked(args)) { mLock.unlock(); MotionEvent event; event.initialize(args->deviceId, args->source, args->action, args->actionButton, args->flags, args->edgeFlags, args->metaState, args->buttonState, 0, 0, args->xPrecision, args->yPrecision, args->downTime, args->eventTime, args->pointerCount, args->pointerProperties, args->pointerCoords); policyFlags |= POLICY_FLAG_FILTERED; // 过滤 if (!mPolicy->filterInputEvent(&event, policyFlags)) { return; // event was consumed by the filter } mLock.lock(); } // Just enqueue a new motion event. MotionEntry* newEntry = new MotionEntry(args->eventTime, args->deviceId, args->source, policyFlags, args->action, args->actionButton, args->flags, args->metaState, args->buttonState, args->edgeFlags, args->xPrecision, args->yPrecision, args->downTime, args->displayId, args->pointerCount, args->pointerProperties, args->pointerCoords, 0, 0); // 入队 needWake = enqueueInboundEventLocked(newEntry); mLock.unlock(); } // release lock if (needWake) { // 唤醒 mLooper->wake(); } }
notifyMotion()会先检查合法性,然后预处理,如果需要过滤则进行过滤处理,
否则构建 MotionEntry,并入队,随后将looper唤醒。
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) { bool needWake = mInboundQueue.isEmpty(); // 入队 mInboundQueue.enqueueAtTail(entry); ...... }
InputReader这一侧大至就分析完了,数据从InputReader传到InputDispatcher也清楚了,
接下来看看数据分发。
3. 分发数据
在开头也讲到,InputDispatcherThread里不断的loop,调用dispatchOnce()进行数据的分发。
frameworks/native/services/inputflinger/InputDispatcher.cpp void InputDispatcher::dispatchOnce() { ...... // Run a dispatch loop if there are no pending commands. // The dispatch loop might enqueue commands to run afterwards. if (!haveCommandsLocked()) { // 如果命令列队为空, 进行事件分发 dispatchOnceInnerLocked(&nextWakeupTime); } //如果looper里没有信息,会阻塞,直到timeoutMillis超时 mLooper->pollOnce(timeoutMillis); }
dispatchOnce()里如果命令处理完了,才会调用dispatchOnceInnerLocked()进行事件处理。
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) { .....//如果没有event,抓取一个 // Ready to start a new event. // If we don't already have a pending event, go grab one. if (! mPendingEvent) { if (mInboundQueue.isEmpty()) { ...... } else { // Inbound queue has at least one entry. mPendingEvent = mInboundQueue.dequeueAtHead(); //<---从mInboundQueue队头抓个 traceInboundQueueLengthLocked(); } ......//一些错误处理,包括anr时间重置,略过 switch (mPendingEvent->type) { case EventEntry::TYPE_CONFIGURATION_CHANGED: .... case EventEntry::TYPE_DEVICE_RESET: .... case EventEntry::TYPE_KEY: ..... ......//对我们的touch来说是motion事件 case EventEntry::TYPE_MOTION: { MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent); if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) { dropReason = DROP_REASON_APP_SWITCH; } if (dropReason == DROP_REASON_NOT_DROPPED && isStaleEventLocked(currentTime, typedEntry)) { dropReason = DROP_REASON_STALE; } if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) { dropReason = DROP_REASON_BLOCKED; } //分发事件 done = dispatchMotionLocked(currentTime, typedEntry, &dropReason, nextWakeupTime); break; } ...... }
dispatchOnceInnerLocked从mInboundQueue队列中取出之前的MotionEntry,
然后错误处理,对于触屏事件做dispatchMotionLocked()
bool InputDispatcher::dispatchMotionLocked( nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) { ......// 是否为 point event bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER; // Identify targets. Vector<InputTarget> inputTargets; ...... if (isPointerEvent) { // Pointer event. (eg. touchscreen) injectionResult = findTouchedWindowTargetsLocked(currentTime, entry, inputTargets, nextWakeupTime, &conflictingPointerActions); } else { // Non touch event. (eg. trackball) injectionResult = findFocusedWindowTargetsLocked(currentTime, entry, inputTargets, nextWakeupTime); } ...... dispatchEventLocked(currentTime, entry, inputTargets); return true; }
对于point event,会先用
findTouchedWindowTargetsLocked() 找到目标窗口,否则用
findFocusedWindowTargetsLocked() 找到目标窗口
对我们的触屏来说,包含有该属性
frameworks/native/include/android/input.h
AINPUT_SOURCE_TOUCHSCREEN = 0x00001000 | AINPUT_SOURCE_CLASS_POINTER,
找到目标窗口后,再用 dispatchEventLocked() 发给目标窗口
dispatchEventLocked() --> prepareDispatchCycleLocked() --> enqueueDispatchEntriesLocked() void InputDispatcher::dispatchEventLocked(nsecs_t currentTime, EventEntry* eventEntry, const Vector<InputTarget>& inputTargets) { ...... for (size_t i = 0; i < inputTargets.size(); i++) { const InputTarget& inputTarget = inputTargets.itemAt(i); ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); if (connectionIndex >= 0) { sp<Connection> connection = mConnectionsByFd.valueAt(connectionIndex); prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget); ...... } void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, ...... // Not splitting. Enqueue dispatch entries for the event as is. enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget); }
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime, const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) { bool wasEmpty = connection->outboundQueue.isEmpty(); // Enqueue dispatch entries for the requested modes. enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_OUTSIDE); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_IS); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT); enqueueDispatchEntryLocked(connection, eventEntry, inputTarget, InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER); // If the outbound queue was previously empty, start the dispatch cycle going. if (wasEmpty && !connection->outboundQueue.isEmpty()) { startDispatchCycleLocked(currentTime, connection); } }
enqueueDispatchEntryLocked()会根据flag mode进行比较,然后加入到connection的outboundQueue里
connection->outboundQueue.enqueueAtTail(dispatchEntry);
然后再调用
startDispatchCycleLocked()最终通过socket把事件发出去
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection) { ...... case EventEntry::TYPE_MOTION: { ...... // Publish the motion event. status = connection->inputPublisher.publishMotionEvent(dispatchEntry->seq, motionEntry->deviceId, motionEntry->source, motionEntry->displayId, dispatchEntry->resolvedAction, motionEntry->actionButton, dispatchEntry->resolvedFlags, motionEntry->edgeFlags, motionEntry->metaState, motionEntry->buttonState, xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision, motionEntry->downTime, motionEntry->eventTime, motionEntry->pointerCount, motionEntry->pointerProperties, usingCoords); break; } ...... frameworks/native/libs/input/InputTransport.cpp status_t InputPublisher::publishMotionEvent( ...... InputMessage msg; msg.header.type = InputMessage::TYPE_MOTION; ...... // 通过socket发送 return mChannel->sendMessage(&msg); }
4. 数据接收
数据发送后,又被谁接收到了呢?之后流程又如何呢?
input数据主要有两种,一个应用,一个MonitoringChannel,
这里仅简单的列举下,详细的请看看参考文档
4.1 App 接收
对于应用的接收,需要看input channel是咋建立的,
然后看看findTouchedWindowTargetsLocked(),咋找到目录窗口,该函数很复杂,
但有个比较重要的是查询 mWindowHandles, 该变量在setInputWindows()设置,
WindowManagerService.java mInputMonitor.updateInputWindowsLw(false /*force*/); in addWindow() -+ mInputMonitor.updateInputWindowsLw(true /*force*/); in postWindowRemoveCleanupLocked() + mInputMonitor.updateInputWindowsLw(true /*force*/); in relayoutWindow() + mInputMonitor.updateInputWindowsLw(true /*force*/); in relayoutWindow() +--> updateInputWindowsLw() --> mInputMonitor.updateInputWindowsLw(true /*force*/); in removeWindowToken() + mInputMonitor.updateInputWindowsLw(true /*force*/); in startPositioningLocked() + mInputMonitor.updateInputWindowsLw(true /*force*/); in startPositioningLocked() + mInputMonitor.updateInputWindowsLw(true /*force*/); in finishPositioning() -+ InputMonitor.java updateInputWindowsLw() +--> mUpdateInputForAllWindowsConsumer.updateInputWindows(inDrag) +--> updateInputWindows() +--> InputManagerService.java setInputWindows() +--> nativeSetInputWindows() +--> im->setInputWindows (NativeInputManager::setInputWindows()) +--> mInputManager->getDispatcher()->setInputWindows() +--> void InputDispatcher::setInputWindows(const Vector<sp<InputWindowHandle> >& inputWindowHandles) { ...... mWindowHandles = inputWindowHandles;
应用添加窗口设置mWindowHandles如上。在addWindow() relayoutWindow()...过程中都可能设置该变量
frameworks/base/core/java/android/view/ViewRootImpl.java public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) { ...... // addToDisplay() 将调用WMS mService.addWindow() res = mWindowSession.addToDisplay(mWindow, mSeq, mWindowAttributes, getHostVisibility(), mDisplay.getDisplayId(), mWinFrame, mAttachInfo.mContentInsets, mAttachInfo.mStableInsets, mAttachInfo.mOutsets, mAttachInfo.mDisplayCutout, mInputChannel); ...... // mInputEventReceiver = new WindowInputEventReceiver(mInputChannel, Looper.myLooper()); }
对应用来说在setView() 时会调用mWindowSession.addToDisplay(),很后调用addWindow(), 然后win.openInputChannel(outInputChannel)等建立channel操作
addToDisplay() 之会,会将mInputChannel looper,通过 WindowInputEventReceiver绑在一起,
这样当有数据到来时在looper里面处理。
WindowInputEventReceiver()流程如下
WindowInputEventReceiver() --> InputEventReceiver.java InputEventReceiver() --> nativeInit() --> frameworks/base/core/jni/android_view_InputEventReceiver.cpp static jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak, jobject inputChannelObj, jobject messageQueueObj) { ...... sp<NativeInputEventReceiver> receiver = new NativeInputEventReceiver(env, receiverWeak, inputChannel, messageQueue); status_t status = receiver->initialize(); ...... } initialize() (NativeInputEventReceiver::initialize())--> setFdEvents(ALOOPER_EVENT_INPUT) --> // 注意事件类型为 ALOOPER_EVENT_INPUT void NativeInputEventReceiver::setFdEvents(int events) { if (mFdEvents != events) { mFdEvents = events; int fd = mInputConsumer.getChannel()->getFd(); if (events) { mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL); system/core/libutils/Looper.cpp int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) { ......// 将input channel的fd加入到epoll监控中 int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
** 当socket接收到数据时,通过handle来处理
android_view_InputEventReceiver.cpp int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) { ......// ALOOPER_EVENT_INPUT 事件 if (events & ALOOPER_EVENT_INPUT) { JNIEnv* env = AndroidRuntime::getJNIEnv(); status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL); mMessageQueue->raiseAndClearException(env, "handleReceiveCallback"); return status == OK || status == NO_MEMORY ? 1 : 0; } ...... } handleEvent() --> consumeEvents() --> status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env, bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) { ...... status_t status = mInputConsumer.consume(&mInputEventFactory, //取数据 ...... if (inputEventObj) { ... env->CallVoidMethod(receiverObj.get(), gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj, //调用 dispatchInputEvent() ...... } --> frameworks/base/core/java/android/view/InputEventReceiver.java dispatchInputEvent() --> onInputEvent() --> final class WindowInputEventReceiver extends InputEventReceiver { ...... @Override public void onInputEvent(InputEvent event, int displayId) { enqueueInputEvent(event, this, 0, true); } void enqueueInputEvent(InputEvent event, InputEventReceiver receiver, int flags, boolean processImmediately) { ...... if (processImmediately) { doProcessInputEvents(); // --> deliverInputEvent(q); } else { scheduleProcessInputEvents(); } } ViewRootImpl.java private void deliverInputEvent(QueuedInputEvent q) { ...... InputStage stage; if (q.shouldSendToSynthesizer()) { stage = mSyntheticInputStage; } else { // mFirstPostImeInputStage = earlyPostImeStage; new EarlyPostImeInputStage(nativePostImeStage); 注意参数为nativePostImeStage,在 apply(q, onProcess(q)) 返回forward时会用到 stage = q.shouldSkipIme() ? mFirstPostImeInputStage : mFirstInputStage; } ...... if (stage != null) { handleWindowFocusChanged(); stage.deliver(q); ...... } stage.deliver --> apply(q, onProcess(q)) --> EarlyPostImeInputStage onProcess() --> processPointerEvent() --> (EarlyPostImeInputStage-->NativePostImeInputStage-->ViewPostImeInputStage-->SyntheticInputStage;) ViewPostImeInputStage mView.dispatchPointerEvent(event) View.java dispatchPointerEvent() +-->View.java dispatchTouchEvent() --> li.mOnTouchListener.onTouch(this, event) onTouchEvent(event) + +--> ViewGroup.java dispatchTouchEvent()
4.2 接收
在分发input数据时,会把 mMonitoringChannels 加入到目标中,然后通过socket也发给该目标,
InputDispatcher::dispatchMotionLocked() --> addMonitoringTargetsLocked() --> for mMonitoringChannels
在WMS时构造,会通过monitorInput()创建,
之后别的服务可通过WMS registerPointerEventListener() unregisterPointerEventListener() 以listener方式获取数据
frameworks/base/services/core/java/com/android/server/wm/WindowManagerService.java private WindowManagerService(......) { ...... if(mInputManager != null) { final InputChannel inputChannel = mInputManager.monitorInput(TAG_WM); mPointerEventDispatcher = inputChannel != null ? new PointerEventDispatcher(inputChannel) : null; @Override public void registerPointerEventListener(PointerEventListener listener) { mPointerEventDispatcher.registerInputEventListener(listener); } @Override public void unregisterPointerEventListener(PointerEventListener listener) { mPointerEventDispatcher.unregisterInputEventListener(listener); }
monitorInput()流程如下:
InputManagerService.java monitorInput() +--> nativeRegisterInputChannel(......, true); +--> NativeInputManager::registerInputChannel() +--> mInputManager->getDispatcher()->registerInputChannel() --> status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, const sp<InputWindowHandle>& inputWindowHandle, bool monitor) { ...... if (monitor) { mMonitoringChannels.push(inputChannel); } ...... }
个人笔记
数据的转存
从slot --> RawPointerData --> cookAndDispatch() cookPointerData()进一步处理将值给
mCurrentCookedState.cookedPointerData,主要为
cookedPointerData.pointerCoords cookedPointerData.pointerProperties
dispatchMotion()时参数传入cookedPointerData,进一步将数据封装为
NotifyMotionArgs
dispatchMotion(when, policyFlags, mSource,
......
mCurrentCookedStat.cookedPointerData.pointerProperties, mCurrentCookedStat.cookedPointerData.pointerCoords, mCurrentCookedStat.cookedPointerData.idToIndex,
......
TouchInputMapper::sync() +-> syncTouch(when, next); --> 数据从slot到outState->rawPointerData.pointers[outCount];
+-> processRawTouches() --> cookAndDispatch() --> dispatchTouches() --> dispatchMotion()
数据处理完后将 NotifyMotionArgs 压入mArgsQueue
TouchInputMapper::dispatchMotion() --> getListener()->notifyMotion(&args) -->
frameworks/native/services/inputflinger/InputListener.cpp
void NotifyMotionArgs::notify(const sp<InputListenerInterface>& listener) const {
listener->notifyMotion(this);
}
void QueuedInputListener::notifyMotion(const NotifyMotionArgs* args) {
mArgsQueue.push(new NotifyMotionArgs(*args));
}
void MultiTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) {
size_t inCount = mMultiTouchMotionAccumulator.getSlotCount();
......
for (size_t inIndex = 0; inIndex < inCount; inIndex++) { const MultiTouchMotionAccumulator::Slot* inSlot = mMultiTouchMotionAccumulator.getSlot(inIndex);
......
RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[outCount]; outPointer.x = inSlot->getX(); outPointer.y = inSlot->getY();
......
}
数据从MultiTouchMotionAccumulator::Slot 转到 RawPointerData::Pointer
void TouchInputMapper::processRawTouches(bool timeout) { ....//在处理mRawStatesPending数据时,一个一个取出给mCurrentRawState,然后 cookAndDispatch进一步处理 for(count = 0; count < N; count++) { const RawState& next = mRawStatesPending[count]; ......//给mCurrentRawState mCurrentRawState.copyFrom(next); ......//cookAndDispatch加工并分发 cookAndDispatch(mCurrentRawState.when); void TouchInputMapper::cookPointerData() { uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; mCurrentCookedState.cookedPointerData.clear(); ......//将数据进一步的处理,例如,计算旋转后的值 // Walk through the the active pointers and map device coordinates onto // surface coordinates and adjust for display orientation. for (uint32_t i = 0; i < currentPointerCount; i++) { const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; ...... case DISPLAY_ORIENTATION_90: x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate; ......//将值给 cookedPointerData.pointerCoords // Write output coords. PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; out.clear(); out.setAxisValue(AMOTION_EVENT_AXIS_X, x); out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); ......//将值给 cookedPointerData.pointerProperties // Write output properties. PointerProperties& properties = mCurrentCookedState.cookedPointerData.pointerProperties[i]; uint32_t id = in.id; properties.clear(); properties.id = id; properties.toolType = in.toolType; // Write id index. mCurrentCookedState.cookedPointerData.idToIndex[id] = i; ......
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 使用动态分析技术分析 Java
- 使用动态分析技术分析 Java
- 案例分析:如何进行需求分析?
- 深度分析ConcurrentHashMap原理分析
- 如何分析“数据分析师”的岗位?
- EOS源码分析(3)案例分析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
The Art of UNIX Programming
Eric S. Raymond / Addison-Wesley / 2003-10-3 / USD 54.99
Writing better software: 30 years of UNIX development wisdom In this book, five years in the making, the author encapsulates three decades of unwritten, hard-won software engineering wisdom. Raymond b......一起来看看 《The Art of UNIX Programming》 这本书的介绍吧!