Celery实际使用与内存泄漏问题(面试)

栏目: 后端 · 发布时间: 5年前

内容简介:​​ 配置​ 还可以

1.实际使用

监控task的执行结果: 任务id,结果,traceback,children,任务状态

​ 配置 backend='redis://127.0.0.1:6379/5' 给Celery的app对象,直接在 redis 中查看

​ 还可以

健壮celerycelery -A proj worker -l info

☁  proj  tree
├── __init__.py 
├── celery.py | app=Clery('proj',include=['proj.tasks'])
                app.config_from_object('proj.config')
                if __name__==__main__: app.start()
├── config.py |  CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/6'
                BROKER_URL = 'redis://127.0.0.1:6379/5'      
└── tasks.py  |  @app.task            # 注意这个文件名必须是tasks.py
                def add(x, y): return x + y

​ tasks可以有多个在celery.py中添加一行代码加载任务函数

app.autodiscover_tasks(['proj.sms', 'proj.email'])

Scheduler计划定时任务: celery -A proj worker -B -l info

#config.py
CELERY_TIMEZONE = 'Asia/Shanghai' # 指定时区
from datetime import timedelta
CELERYBEAT_SCHEDULE = {
    'add-every-30-seconds': {
         'task': 'proj.tasks.add', # 指定要执行的函数任务
         'schedule': timedelta(seconds=30), # 指定计划时间间隔30s执行一次task
         'args': (16, 16)
    },
}

celery.schedules import crontab定时周期任务: (比如每周一执行一次 )

​ 只需要修改 'schedule': crontab(hour=7, minute=30, day_of_week=1),

2.celery扩展使用

指定队列名:

​ 启动加上-Q参数 celery -A proj worker --loglevel=info -Q 'testq'

​ 跑任务时 add.delay(3,4,queue='testq')

指定开启的worker进程数: 单个Celery进程每分钟就可以处理数百万个任务

​ 底层是调用的 Python 的multiprocessing模块中的Pool进程池思想来做

​ 启动加上-c参数 celery -A proj worker --loglevel=info -c 2 2个worker进程来同时抢任务

图像化查看broker里面的数据,查看任务状态,以及任务的详细信息: flower的webUI

pip install flower 注意创建celery实例app时指定的broker设置的redis/5

​ 任意目录执行 celery flower --port=5555 --broker=redis://localhost:6379/5

3.DJango-celery模式(嵌入到大型DJango项目中)

应用: django调用celery跑异步任务,常见场景有注册成功,发送邮件可以异步来防止网络IO阻塞,以及耗时间的任务,可以在WEB应用中使用这种异步方式

  1. 安装 django-celery==3.1.17celery==3.1.17 对应
  2. 创建celery必须的数据库表结构 python manage.py migrate
  3. django项目的settings.py文件中追加如下内容:backend,任务执行结果超时时间,worker并发数也就是 -c 指定的数据,指定任务周期存储在orm数据库中
  4. 在django的app应用目录下创建tasks.py任务文件 @task def add(x,y):
  5. 开启django服务和celery服务,虽然耦合了,还要开 python manage.py celery worker --loglevel=info

4.内存泄漏问题

celery内存泄露分析

celery配置项如下

CELERYD_CONCURRENCY = 2      celery worker并发数
CELERYD_MAX_TASKS_PER_CHILD = 5   每个worker最大执行任务数

执行celery -A ansibleAPI.celery worker启动celery,通过ps -ef | grep celery可以看到两个celery worker进程(8226,8228)。

利用celery worker进行某个任务,当worker没有执行到最大任务时(即销毁重建),每执行一次任务占用内存必然有所增加,任务数为9,10时(celery均匀调度,并发数*最大任务数),分别有原8228 worker被销毁,重新创建9386 worker及原8226 worker被销毁,重新创建9564 worker,此时,运行第9次时,占用总内存有所下降,运行第10次时,总内存回到初如值,同样任务执行第19、20次情况类似。

celery并发计算规则

celery任务并发只与celery配置项CELERYD_CONCURRENCY 有关,与CELERYD_MAX_TASKS_PER_CHILD没有关系,即CELERYD_CONCURRENCY=2,只能并发2个worker,此时任务处理较大的文件时,执行两次可以看到两个task任务并行执行,而执行第三个任务时,开始排队,直到两个worker执行完毕。

结论

celery执行完任务不释放内存与原worker一直没有被销毁有关,因此CELERYD_MAX_TASKS_PER_CHILD可以适当配置小点,而任务并发数与CELERYD_CONCURRENCY配置项有关,每增加一个worker必然增加内存消耗,同时也影响到一个worker何时被销毁,因为celery是均匀调度任务至每个worker,因此也不宜配置过大,适当配置。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

运营实战指南

运营实战指南

韩利 / 电子工业出版社 / 2016-9-1 / 49

《运营实战指南》架构清晰,前8章主要通过故事形式深入浅出理解运营,将运营基础知识和概念融入到故事中。第9章讲解运营核心方法论,从目标、关键驱动元素、试错调优、高效运行4部分来完整讲解一个运营项目从0到1的过程。第10章、11章、12章深入讲解了运营人拿业绩最核心的知识点:用户、内容和文案。其中数据分析、活动运营等内容以案例形式穿插在各个章节中。最后两章,主谈运营人在日常生活中如何历练以及一个运营人......一起来看看 《运营实战指南》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码

MD5 加密
MD5 加密

MD5 加密工具