开发者都应该了解的数据库隔离级别

栏目: 数据库 · 发布时间: 5年前

内容简介:那么如何判断自己是不是对事务隔离级别有了较为深入的理解了呢?开发同学可以问自己这样两个问题:(1)事务隔离级别分为几类?分别能解决什么问题?是否有明确定义?这样的定义是否准确?(2)当前主流数据库(Oracle/MySQL...)的隔离级别表现和实现是怎样的?是否与“官方”定义一致?如果能清楚明白的回答这两个问题,恭喜,你对事务隔离级别认识已经非常深刻了。如果不能,也没有关系,读完本文你就有答案了。

X-MAN导读 :谈到事务隔离级别,开发同学都能说个八九不离十。脏读、不可重复读、RC、RR...这些常见术语也大概知道是什么意思。但是做技术,严谨和细致很重要。如果对事务隔离级别的认识,仅仅停留在大概知道的程度,数据库内核研发者可能开发出令用户费解的隔离级别表现,业务研发者可能从数据库中查出与预期不符的结果。

那么如何判断自己是不是对事务隔离级别有了较为深入的理解了呢?开发同学可以问自己这样两个问题:(1)事务隔离级别分为几类?分别能解决什么问题?是否有明确定义?这样的定义是否准确?(2)当前主流数据库(Oracle/MySQL...)的隔离级别表现和实现是怎样的?是否与“官方”定义一致?

如果能清楚明白的回答这两个问题,恭喜,你对事务隔离级别认识已经非常深刻了。如果不能,也没有关系,读完本文你就有答案了。

事务隔离级别

事务隔离级别,主要保障关系数据库ACID特性的I(Isolation),既针对存在冲突的并发事务,提供一定程度的安全保证。ANSI(American National Standards Institute) SQL 92标准首先定义了3种并发事务可能导致的不一致异象:

Dirty read: SQL-transaction T1 modifies a row. SQL- transaction T2 then reads that row before T1 performs a COMMIT. If T1 then performs a ROLLBACK, T2 will have read a row that was never committed and that may thus be considered to have never existed.

Non-repeatable read: SQL-transaction T1 reads a row. SQL- transaction T2 then modifies or deletes that row and performs a COMMIT. If T1 then attempts to reread the row, it may receive the modified value or discover that the row has been deleted.

Phantom: SQL-transaction T1 reads the set of rows N that satisfy some . SQL-transaction T2 then executes SQL-statements that generate one or more rows that satisfy the used by SQL-transaction T1. If SQL-transaction T1 then repeats the initial read with the same , it obtains a different collection of rows.

嫌弃以上定义冗长,可以直接看以下形式化描述:

A1 Dirty Read:w1[x] ...  r2[x] ... (a1 and  c2 in any order)

A2 Fuzzy Read: r1[x] ... w2[x] ... c2 ...  r1[x] ...  c1

A3 Phantom Read: r1[P] ... w2[y in P] ... c2 ...  r1[P]  ...  c1

其中w1[x]表示事务1写入记录x,r1表示事务1读取记录x,c1表示事务1提交,a1表示事务1回滚,r1[P]表示事务1按照谓词P的条件读取若干条记录,w1[y in P]表示事务1写入记录y满足谓词P的条件。

据此,ANSI定义了四种隔离级别,分别解决以上三种异常:

开发者都应该了解的数据库隔离级别

根据上述几种异常现象定义隔离级别,可谓十分不严谨,Jim Gray大名鼎鼎的论文A Critique of ANSI SQL Isolation Levels(后文简称Critique)就对此做了批判。

不严谨之一:禁止了P1/P2/P3的事务,即满足了Serializable级别。但是在ANSI标准中又明确描述Serializable级别为“多个并发事务执行的效果与某种串行化执行的效果等价”。显然这两者是矛盾的,禁止P1/P2/P3的事务,不一定能满足“等价于某种串行执行”。所以Critique将ANSI定义的禁止了P1/P2/P3的隔离级别称为Anomaly Serializable。

不严谨之二:异常现象定义不准确,如下例并未被A1囊括,却仍然出现了Dirty Read(Txn2读到x+y!=100)。同样,A2/A3也能举出这样的例子,感兴趣的同学可以自己尝试列举,这里不再详述。

开发者都应该了解的数据库隔离级别

究其原因,ANSI对异象的定义太为严格,如果除去对事务提交、回滚和数据查询范围的要求,仅保留关键的并发事务之间读写操作的顺序,更为宽松且准确的异象定义如下:

P1 Dirty Read: w1[x]...r2[x]...(c1 or a1)

P2 Fuzzy Read: r1[x]...w2[x]...(c1 or a1)

P3 Phantom: r1[P]...w2[y in P]...(c1 or a1)

不严谨之三:三种异象仅针对S(ingle) V(alue)系统,不足以定义M(ulti)V(ersion)系统的隔离性。很多商业数据库所实现的SI,未违反P1、P2和P3,但又可能出现Constraint violation,不可串行化。除了P1/P2/P3,还可能出现哪些异常呢?

P4 Lost Update:r1[x]...w2[x]...w1[x]...c1

A5A Read Skew:r1[x]…w2[x]... w2[y]…c2…r1[y] …(c1 or a1)

A5B Write Skew:r1[x]…r2[y]…w1[y]…w2[x]…(c1 and c2 occur)

A5B2 Write Skew2:r1[P]... r2[P]…w1[y in P]…w2[x in P]...(c1 and c2 occur)

针对这四种情况,分别举一个例子:

r1[x=50] r2[x=50] w2[x=60] c2 w1[x=70] c1

Lost Update:事务1和事务2同时向同一个账户x分别充20和10块,事务1后提交,将70块写入数据库,事务2提交结果60块被覆盖。正确的情况下,事务1和2提交成功,账户里应该有80块。

(x+y=100) r1[x=50] w2[x=10] w2[y=90] c2 r1[y=90] c1

Read Skew: x和y账户分别有50块钱,加起来共100块。事务1读x(50块)后,事务2将x账户的40块转到y账户,事务2提交后,事务1读y(90块)。在事务1看来,x+y=140,出现了不一致。

(x+y>=60) r1[x=50] r2[y=50] w1[y=10] c1 w2[x=10] c2

Write Skew:x和y账户分别有50块钱,加起来共100块。假设存在某种约束,x和y账户的钱加起来不得少于60块。事务1和事务2在自认为不破坏约束的情况下(分别读了x账户和y账户),再分别从y账户和x账户取走40。但事实上,这两个事务完成后,x+y=20,约束条件被破坏。

(count(P)<=4):r1[count(P)=3],r2[count(P)=3],insert1[x in P],insert2[y in P],c1,c2

Write Skew2:将Write Skew的条件改为范围。

隔离级别实现

上一节介绍了ANSI定义的3种异象,及根据禁止异象的个数而定义的事务隔离级别。因为不存在严格、严谨的“官方”定义,各主流数据库隔离级别的表现也略有不同,一些现象甚至让用户感到困惑。我认为相较于纠结隔离级别的准确定义,认识各数据库隔离级别的表现和实现,在生产环境中正确的使用它们才是更应该关注的事情。本节将以大篇幅具体的例子为切入点,介绍几种主流数据库隔离级别的表现,及内部对应的实现。

Lock-based 隔离级别实现

在展示Lock-based隔离级别实现前,先介绍几个与锁相关的概念:

Item Lock:对访问行加锁,可以防止dirty/fuzzy read。

Predicate Lock(gap lock):对search的范围加锁,全表扫描直接对整张表加锁,可防止phantom read。

Short duration:语句结束后释放锁。

Long duration:事务提交或回滚后释放锁。

上述锁操作组合,便可实现不同级别的事务隔离标准,如下表所示。

开发者都应该了解的数据库隔离级别

其中S lock代表共享锁,X lock代表排它锁。

首先所有写操作加X locks时,都会选择Long duration,否则short duration锁被释放后,在事务提交前该条更改可能被其它事务写操作覆盖,造成脏写(dirty write)。

其次对于读操作:

Short duration Item S lock禁止了 P1发生,读操作如果遇到正在修改的行(写事务加了X Lock),阻塞在S Lock,直到写事务提交。

Long duration Item S lock 禁止了P2发生,写操作遇到读事务(S Lock),阻塞在X Lock上直到读事务提交或回滚。

Long duration Predicate/Table S Lock 禁止了P3发生,(范围)写操作遇到范围读操作(加Predicate S Lock),会被阻塞,直到读事务提交或回滚。

基于锁实现的三种隔离级别分别能禁止的异象如下表所示:

开发者都应该了解的数据库隔离级别

然而当今数据库基于性能等多方面考虑,很少有完全基于锁实现隔离级别的,MVCC+Lock的方式,可以满足读请求不加锁,是主流的实现方式。

Oracle隔离级别的实现

Oracle仅支持两种隔离级别:Read Committed与Serializable。尽管官方这样描述,Oracle的Serializable实际是基于MVCC+Lock based的SI(Snapshot Isolation)隔离级别。

为实现快照读,内部维护了全局变量SCN(System Commit/Change Number),在事务提交时递增。读请求获取Snapshot便是获取当前最新的SCN。Oracle实现MVCC的方式是将block分为两类:(1)Current blocks为当前最新的页面,与持久化态数据保持一致。(2)Consistent Read blocks,根据snapshot SCN生成相应的一致性版本页面。

以下两个具体的例子展示了:不同隔离级别下,读写语句在数据库内部发生了什么。

开发者都应该了解的数据库隔离级别

Oracle在read committed隔离级别下,每条语句都会获取最新的snapshot,读请求全部是snapshot读。写请求在更新行之前,需要加行锁。由于写操作不会因为有其它事务更新了同一行,而停止更新(除非不满足更新的谓词条件了),因此Lost Update有可能发生。

开发者都应该了解的数据库隔离级别

Oracle在serializable隔离级别下,事务开始便获取snapshot。读请求全部是snapshot读,而写请求在更新行之前,需要加行锁。写操作在加锁后,首先检查该行,如果发现:最近修改过这行的事务的SCN大于本事务的SCN,说明它已经被修改且无法被本事务看到,会做报错处理,避免了Lost Update。这种写冲突的实现,显然是first committer wins。

下表展示了Oracle的两种隔离级别,分别能够避免哪些异象:

开发者都应该了解的数据库隔离级别

MySQL(InnoDB)隔离级别实现

InnoDB同样以MVCC+Lock的方式实现隔离级别。其中普通select语句均是snapshot read。而delete/update/select for update等语句是加锁实现的current read,如下表所示(注:该表为Pecona 5.6版本的代码实现)。

开发者都应该了解的数据库隔离级别

InnoDB的RC隔离级别的表现与Oracle相似。而相较于Oracle的SI,InnoDB RR隔离级别依旧不能避免Lost Update(例如下例)。究其原因,InnoDB在RR隔离级别下,不会在事务提交时判断是否有其它事务修改过该行。这避免了了SI更新冲突带来的回滚代价,带来了可能发生Lost Update的风险。

开发者都应该了解的数据库隔离级别

由于update等操作均是加锁的当前读,因此Phantom Read的现象也是存在的(如下表所示)。但是如果将Txn1的update语句替换为select语句,Phantom Read现象则可以禁止,因为整个事务select语句使用的是同一个snapshot。

开发者都应该了解的数据库隔离级别

Innodb RR的实现方式虽然并非并未严格排除Lost Update和Repeatable Read,但其充分利用MVCC读不加锁的并发能力,同时current read避免了SI在更新冲突剧增时过多的回滚代价。

InnoDB还实现了Lock Based Serializable(详见2.1),禁止了所有异象。

PolarDB X 隔离级别实现

PolarDB X隔离级别实现同样采用MVCC+Lock的方式,支持RC和SI,表现与Oracle的RC,Serializable一致。具体实现层面,PolarDB X实现了行级MVCC,每条记录的key都附有一条HLC时间戳(注:PolarDB X分布式事务是基于Hybrid Logic Clock实现的)表示自己的版本。所有的读操作均是快照读(包括加锁读),读请求所需要的snapshot也是一个HLC时间戳。写写冲突处理依靠两阶段锁,并遵循First committer wins。

按照惯例,以下面两个例子分析,说明我们的实现原理:

开发者都应该了解的数据库隔离级别

开发者都应该了解的数据库隔离级别

与Oracle类似,PolarBD X SI隔离级别,可以避免Lost Update:

开发者都应该了解的数据库隔离级别

总结

开发者都应该了解的数据库隔离级别

前文介绍了多种数据库隔离级别的表现,对比如上表所示。其种 MySQL 比较特殊,如前文所述,其RR级别可以禁止部分幻读现象。开发人员在使用数据库时,需要注意:尽管不同数据库隔离级别名称相同,但是表现却可能存在差异。

开发者都应该了解的数据库隔离级别


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品的视角:从热闹到门道

产品的视角:从热闹到门道

后显慧 / 机械工业出版社 / 2016-1-1 / 69.00

本书在创造性的提出互联网产品定义的基础上,为读者提供了一个从0基础到产品操盘手的产品思维培养方法! 全书以互联网产品定义为基础,提出了产品思维学习的RAC模型,通过认识产品、还原产品和创造产品三个阶段去培养产品思维和产品认知。 通过大量的图片和视觉引导的方法,作者像零基础的用户深入浅出的描绘了一条产品经理的自我修养路径,并且提供了知识地图(knowledge map)和阅读雷达等工具,......一起来看看 《产品的视角:从热闹到门道》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具