问卷数据,该如何着手分析呢?

栏目: 数据库 · 发布时间: 5年前

内容简介:工作中用到的调研问卷,探索的内容相对具体,涉及的变量也比较少,一般不会用到太复杂的分析方法,Excel+SPSS即可搞定,本文整理了几类常见的问卷分析思路。拿到一份问卷数据,该如何着手分析呢?且慢,要做分析得先检查数据是不是完整、可信,所以先从数据清洗开聊。

工作中用到的调研问卷,探索的内容相对具体,涉及的变量也比较少,一般不会用到太复杂的分析方法,Excel+SPSS即可搞定,本文整理了几类常见的问卷分析思路。

问卷数据,该如何着手分析呢?

拿到一份问卷数据,该如何着手分析呢?且慢,要做分析得先检查数据是不是完整、可信,所以先从数据清洗开聊。

一、数据清洗

(1)一份数据可能经历过编码、合并、拆分等,先检查数据是否完整,是否有异常值?

选择题、 排序 题这类封闭题型的答案是有限制范围的,针对这类题型,在spss内使用频率统计功能,查看每个题目的总量,缺失值,是否有异常值。比如:性别只有1、2两个选项,出现其他选项则说明有问题。有个小技巧,在Excel中可以使用筛选功能,快速查看每个题目的结果是否有异常值。

(2)有些用户可能会不认真填答,因此需要检查逻辑合理性,是否有前后矛盾的情况?

有些问卷,前后题目有逻辑关系,可以用这类题目做测谎题,筛选出前后矛盾的答案,比如前边用户选择了主要的出行方式是“自己开车”,后边却选择自己的年龄“小于18岁”,那么这类问卷可以视为不认真填答的,删除。

如果没有合适的题目做测谎题,也可以在编制问卷的时候设置测谎题,两种设计思路:

  • 同一个题目前后问两遍,检查答案是否一致 ,如:请从下列选项中选出你最常用的地图APP。注意避免使用有两个答案的问题,比如问用户爱车的品牌就不合适,因为用户前后填答不一致,不一定都是不认真填答,也可能是因为用户本身有两辆车。
  • 设置一个有明显错误答案的问题,检查是否选择了错误的答案 ,如:你最常用的地图APP是哪个:混淆选项可以用 :京东。不过我们只是想检验用户的认真程度,而非考验用户的记忆力,所以测谎题要简单明确,只要认真看题就不会错。比如问用户最常用的地图APP是哪个,混淆选项用“微信”就不合适,因为用户不认真想的话,很容易把微信自带的地图当成地图APP。

如果技术支持,也可以通过后台数据和用户问卷中的数据做匹配,常用的是性别、年龄、常居地之类的数据,也可以问一些明确的行为数据,比如是否用地图买过火车票。

需要注意的是:选择稳定的明确的数据来做校验题目,不要使用需要回忆的数据来校验,用户的记忆是模糊的有误差的,使用频率、使用年限,这些都不适合做校验,因为用户的记忆很可能与实际行为不完全相符。

二、样本加权

问卷调研绝大部分是抽样调研,如果想通过样本的情况去推测整体的情况,除了要考虑最小样本量之外,还需要考虑样本的代表性。群体有很多属性,并不是要求样本的每个属性都和整体一致,而是关注那些对研究问题最有影响的属性,在该属性上样本和整体尽量保持一致。

假设:年龄对用户忠诚度的影响非常大,对出行方式没有影响,那么在研究忠诚度时就需要考虑到年龄因素,而在研究出行方式时,就无需考虑年龄因素了。

一种是事前控制,区分出不同年龄段的用户,分桶按比例发放,该方法成本高很少用。

另一种是事后控制——加权 。比如问卷收集到的用户,与整体用户群分布不一致,但是我们想知道整体用户的忠诚度,此时可以通过加权的方式去调整。

具体方法如下:

问卷数据,该如何着手分析呢?

先根据整体和样本的年龄分布,计算出权重值,然后再使用spss的权重功能,给数据加权。加权后再统计忠诚度。

值得注意的是,不要为了省事儿,直接计算出样本各年龄段的值,然后给个年龄段的值赋个权重,求均值。这样的结果是不对的,必须要使用spss的加权功能。

如果有多个因素,挑选最重要的一个因素加权。如果非要考虑多个因素,那么需要了解多个因素交叉后的整体分布。比如既要考虑性别、又要考虑年龄,那么需要将性别和年龄交叉,知道整体男性的年龄分布、女性的年龄分布,再计算权重,成本太高了。

三、分析思路

我们先假设一份调研问卷,带着这份问卷来看分析思路。

假设要针对大学生群体使用地图APP的情况做个调研,设计了以下问卷,通过这个问卷我们能做哪些分析呢?

问卷数据,该如何着手分析呢?

3.1 描述统计,看整体分布情况

统计各选项的数量、频率是最常用到的分析,然后通过图表展现出来,可以非常直观的看出整体分布情况。

通过这个问卷,我们可以得到:

  • 在大学生群体中, 各手机地图的市场占有率 ,如果有整体的地图市场占有率数据,还可以比较得到,在学生群体中哪个地图更有优势。
  • 大学生群体, 用户常用的功能排序,以及各功能的占比 。该题是多选题,可以使用spss的“定义多重响应集”的功能。此外在计算占比的时候需要想明白,是以整体人数作为分母,还是以整体选择量作为分母,分母不同解释也不同,需要标明。本题以整体人数作为分母,占比的意义是:大学生群体中,多少人使用**功能。

3.2 差异分析,找影响因素

除了看整体分布情况,我们还可以通过差异分析,探索更多的信息。

做差异分析,第一步先找到两个可能有关系的因素;第二步将两个因素交叉统计结果,根据结果在这两个因素间做假设;第三步根据这两个因素的数据类型,选择合适的统计方法,验证假设。

通过这个问卷,我们可以分析:

(1)男性和女性对手机地图的选择有差异么

先分别计算不同品牌的用户性别占比,结果发现不同品牌的男性占比不同,性别和手机品牌都是分类变量,因此使用卡方检验。

问卷数据,该如何着手分析呢?

(2)男性和女性,对手机地图的忠诚度有差异么?

先统计不同性别用户的NPS值,NPS值是等距数据(NPS这个题目,本质上是李克特量表,对该数据是否是等距数据尚有争议,但大部分情况按照等距数据处理),我们想要看男性、女性两组之间的差异,采用T检验。

(3)不同品牌的手机地图,用户的忠诚度有差异么?

与性别变量不同的是,手机品牌有4个维度,T检验只能做两组之间的差异检验,多于两组的时候采用方差分析。

问卷数据,该如何着手分析呢?

(4)是否由于男性用户多导致腾讯地图的忠诚度低呢?

比如男性的忠诚度更低,而不同品牌之间男性的占比又不同,腾讯的男性用户较多,就会假设: 是否由于男性用户多导致腾讯地图的忠诚度低呢

当有两个因素的时候,可以采取协方差分析,在做方差分析的时候,将性别作为协变量纳入,分别看男性组,不同地图品牌间有差异否,女性组不同地图品牌间有差异否。

总结一下,做差异检验的统计方法常用的有三种: 卡方检验、T检验、方差分析。 但是,统计只是辅助判断的一种工具,也有些情况,直接看交叉后的结果就能发现差异巨大,无需统计检验肉眼都可以判断,也有些情况下,统计结果显著,但是差异实在是很微小,也不能做出明确的结论。

所以统计方法并不是重点,找到可能有关系的因素才是重点,学术研究一般会根据过往的研究提出假设,而实际工作中,绝大部分靠经验,多熟悉产品多了解用户,才会有思路。

之前有人提出要做女性地图,认为女性更看不懂地图,需要在图面上有不同的处理。实际调研下来,发现性别既不影响用户使用地图的习惯、也不影响用户对地图的感知。相反年龄明显的影响地图的使用习惯,接下来就需要进一步挖掘年龄的差异了。

3.3 相关分析,找影响因素,以及影响程度

(1)通过差异分析,我们了解到性别会影响用户的忠诚度,我们还想接着探索 用户常用的功能个数是否会影响忠诚度 ,是不是用的功能越多,忠诚度越高呢?

此时需要用到相关分析,使用功能个数是等距数据,使用spss计算Pearson积差相关系数。相关系数介于-1~1之间,绝对值越大关系越密切,符号代表相关的方向。通常情况下,绝对值大于0.4就可以认为这两个数据之间有比较强烈的关系了。所以绝对值越大,说明这个因素的影响程度越大。

如果想探索使用频率和忠诚度之间的关系呢,使用频率是顺序数据,此时需要计算Speaman相关系数。相关是在工作中使用比较多的方法,需要注意的是,相关分析只能解释两个变量之间有无关系,不能得到因果结论。因果结论是我们基于逻辑赋予的,工作中,相关关系已经足够我们做判断了。

(2)如果我们不只是想探索单个因素与忠诚度之间的关系,还想要探索多个影响因素合并在一起对忠诚度的影响,此时可以使用多元回归的方法。

在本调研中,我们可以探索用户遇到使用问题的次数与忠诚度的关系,用户遇到的问题有4种,分别是定位问题、地点问题、路线问题、性能问题。以NPS值为因变量,将这四个问题一起作为因变量,求一个多元回归方程。 但是多元回归方程的建立,对数据的要求比较高,实际调研中使用的非常少,相关系数基本够用了。

不论是相关分析还是回归分析,都只能反映出变量之间的线性相关关系,如果变量间是非线性的关系,是无法体现在相关系数上的,因此在做相关分析之前,可以先做一个散点图,直接观察一下,两个变量间是否有其他的关系可能。

如果是自己做调研,不是拿到数据了才去想怎么分析,而是在编制问卷的时候就要想清楚:我要了解什么问题,需要什么数据支撑,该用什么方法分析?

文中提到的所有统计方法,在统计书中都可以找到细致的操作步骤。本文只是列了最粗浅的统计方法,但是往往粗浅的才够直接,对实际的决策最有支持力。

参考书目:《量化研究与统计分析》邱皓政

本文由 @ 乔溪 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自 Unsplash,基于 CC0 协议


以上所述就是小编给大家介绍的《问卷数据,该如何着手分析呢?》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Go Web 编程

Go Web 编程

[新加坡]Sau Sheong Chang(郑兆雄) / 黄健宏 / 人民邮电出版社 / 2017-11-22 / 79

《Go Web 编程》原名《Go Web Programming》,原书由新加坡开发者郑兆雄(Sau Sheong Chang)创作、 Manning 出版社出版,人名邮电出版社引进了该书的中文版权,并将其交由黄健宏进行翻译。 《Go Web 编程》一书围绕一个网络论坛 作为例子,教授读者如何使用请求处理器、多路复用器、模板引擎、存储系统等核心组件去构建一个 Go Web 应用,然后在该应用......一起来看看 《Go Web 编程》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具