贝叶斯算法及应用

栏目: 数据库 · 发布时间: 5年前

内容简介:朴素贝叶斯是基于“特征之间是独立的”这一朴素假设,应用贝叶斯定理的监督学习算法。

朴素贝叶斯是基于“特征之间是独立的”这一朴素假设,应用贝叶斯定理的监督学习算法。

贝叶斯算法及应用

基于条件概率的贝叶斯定律数学公式

贝叶斯算法及应用

贝叶斯算法及应用

贝叶斯算法及应用

朴素贝叶斯算法

定义

朴素贝叶斯(Naive Bayes,NB)是基于“特征之间是独立的”这一朴素假设,应用贝叶斯定理的监督学习算法,是一种分类算法;

对应给定的样本X的特征向量x1,x2,……,xm;该样本X的类别y的概率可以由贝叶斯公式得到:

区别

贝叶斯算法及应用

贝叶斯算法及应用

KNN分类算法和决策树分类算法最终都是预测出实例的确定的分类结果,但是,有时候分类器会产生错误结果;而朴素贝叶斯分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值。

推导

(1)特征属性X之间是独立的,所以得到

贝叶斯算法及应用 (2)优化得

贝叶斯算法及应用

(3)因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有

贝叶斯算法及应用

贝叶斯算法及应用

流程

  • 设x={a1,a2,……,am}为待分类项,其中a为x的一个特征属性;
  • 类别集合为C={y1,y2,……,yn};
  • 分别计算P(y1|x),P(y2|x),…….,P(yn|x)的值(贝叶斯公式)

贝叶斯算法及应用

高斯朴素贝叶斯

定义

Gaussian Naive Bayes是指当特征属性为连续值时,而且分布服从高斯分布,那么在计算P(x|y)的时候可以直接使用高斯分布的概率公式,其他的与朴素贝叶斯一致

贝叶斯算法及应用

贝叶斯算法及应用

伯努利朴素贝叶斯

定义

Bernoulli Naive Bayes是指当特征属性为连续值时,而且分布服从伯努利分布,  那么在计算P(x|y)的时候可以直接使用伯努利分布的概率公式:

伯努利分布是一种离散分布,只有两种可能的结果。1表示成功,出现的概率为p;  0表示失败,出现的概率为q=1-p;其中均值为E(x)=p,方差为Var(X)=p(1-p)

贝叶斯算法及应用

多项式朴素贝叶斯

定义

Multinomial Naive Bayes是指当特征属性服从多项分布(特征是离散的形式的时候),从而,对于每个类别y,每个特征属性都有一个对应的参数  θy=(θy1,θy2,……,θyn),其中n为特征属性的取值数目,那么P(xk=i|y)的概率为θyi。

贝叶斯算法及应用

举例应用

我们要解决的问题是,网站上有人发布了一条新的采购信息,采购信息的四个特点是采购产品没有在词库中,没有经过手机号校验,没有详情,非会员发布的,需要判断此条采购信息是否真实

准备阶段

确定特征属性x={a1,a2, a3 ,a4}

a1  发布的采购信息产品词是否在我们词库中;

a2  发布信息时是否对手机号进行的短信验证码的校验;

a3  发布的采购信息是否有详情;

a4  发布者是不是网站的会员;

确定类别集合C={y1,y2 }

y1 线索为真实采购;

y2 线索为虚假采购;

获取训练样本

样本数据如下:

贝叶斯算法及应用

训练阶段

下面我将一个一个的进行统计计算(在数据量很大的时候,根据中心极限定理,频率是等于概率的):

(1)对每个类别计算P(y)

贝叶斯算法及应用

1. P(y=真实)=6/12(总样本数)=1/2

贝叶斯算法及应用

2. P(y=假)=6/12(总样本数)=1/2

(2)对每个特征属性计算所有划分的条件概率P(x | y )

在真实条件下

贝叶斯算法及应用

针对特征有无产品词计算条件概率:

P(x1=有产品词 | y)=1/2

P(x1=没有产品词 | y)=1/2

针对特征是否经过手机号校验计算条件概率:

P(x2=经过校验 | y)=5/6

P(x2=不经过校验 | y)=1/6

针对特征采购详情校验计算条件概率:

P(x3=有详情 | y)=5/6

P(x3=无详情 | y)=1/6

针对特征采购详情校验计算条件概率:

P(x4=会员 | y)=5/6

P(x4=非会员 | y)=1/6

在虚假条件下:

贝叶斯算法及应用

针对特征有无产品词计算条件概率:

P(x1=有产品词 | y)=2/3

P(x1=没有产品词 | y)=1/3

针对特征是否经过手机号校验计算条件概率:

P(x2=经过校验 | y)=1/2

P(x2=不经过校验 | y)=1/2

针对特征采购详情校验计算条件概率:

P(x3=有详情 | y)=0

P(x3=无详情 | y)=1

针对特征采购详情校验计算条件概率:

P(x4=会员 | y)=1/3

P(x4=非会员 | y)=2/3

应用阶段

目前样本X为(没有在词库中,没有经过手机号校验,没有详情,非会员发布)

(1)计算此条线索为真实的概率

P(xi | y=真实)= P(x1=没有产品词 | y)* P(x2=不经过校验 | y)* P(x3=无详情 | y)* P(x4=非会员 | y)

=1/2*1/6*1/6*1/6

P(y=真实)= 1/2

贝叶斯算法及应用

(2)计算此条线索为虚假的概率

P(xi | y=虚假)= P(x1=无产品词 | y)* P(x2=不经过校验 | y)* P(x3=无详情 | y)* P(x4=非会员 | y)

P(y=虚假)= 1/2

贝叶斯算法及应用

(3)比较P(y =虚假| x1 , x2 , x3 , x4 )与P(y =真实| x1 , x2 , x3 , x4 )大小,选择最大项作为X所属分类,此条线索为虚假

优缺点

优点:算法逻辑简单,易于实现;

缺点:如果特征属性之间相关性较大时,分类效果不好。

本文由 @SincerityY 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

信息论基础

信息论基础

Thomas M.Cover、Joy A.Thomas / 清华大学出版社 / 2003-11-1 / 65.00元

《国际知名大学原版教材•信息论基础》系统介绍了信息论基本原理及其在通信理论、统计学、计算机科学、概率论以及投资理论等领域的应用。作者以循序渐进的方式,介绍了信息量的基本定义、相对熵、互信息以及他们如何自然地用来解决数据压缩、信道容量、信息率失真、统计假设、网络信息流等问题。一起来看看 《信息论基础》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

html转js在线工具
html转js在线工具

html转js在线工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具