内容简介:架构说明:安装好CentOS7的系统,做以下操作:
系统说明
系统组件版本
- 操作系统: CentOS 7.6
- Kernel: 4.4
- Kubernetes: v1.14.1
- Docker: 18.09 (支持 1.13.1, 17.03, 17.06, 17.09, 18.06, 18.09 )
- Etcd: v3.3.12
- Flannel: v0.11
- cni-plugins: v0.7.5
- CoreDNS: 1.4.0
架构示意图
架构说明:
- 使用六台主机,三台Master节点, 三台node节点
- Master节点上部署的Kubernetes组件有kube-apiserver, kube-scheduler, kube-controller-manager,kube-proxy。部署网络组件flannel,数据存储集群Etcd.
- Master的两个高可用节点部署Haproxy和keepalived
- Node 节点部署的Kubernetes组件有Kubelet,kube-proxy。 容器组件Docker,网络组件Flannel
- 集群IP和主机名信息:
集群角色 | 主机名 | IP |
---|---|---|
Master | master-1 | 192.168.20.44 |
Master | master-2 | 192.168.20.45 |
Master | master-3 | 192.168.20.46 |
Node | k8s-node-1 | 192.168.20.47 |
Node | k8s-node-2 | 192.168.20.48 |
Node | k8s-node-3 | 192.168.20.49 |
- Ceph 需要一个可用的Ceph集群
系统初始化
1. 主机初始化
安装好CentOS7的系统,做以下操作:
yum update
设置内核参数的部分,要确认执行如下操作:
# 高可用Master节点设置内核参数 cat <<EOF > /etc/sysctl.d/k8s.conf net.ipv4.ip_nonlocal_bind = 1 net.ipv4.ip_forward = 1 net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 net.ipv4.ip_local_port_range = 10000 65000 fs.file-max = 2000000 net.ipv4.ip_forward = 1 vm.swappiness = 0 EOF # 其他Master节点和计算节点设置内核参数 cat <<EOF > /etc/sysctl.d/k8s.conf net.ipv4.ip_forward = 1 net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 net.ipv4.ip_local_port_range = 10000 65000 fs.file-max = 2000000 net.ipv4.ip_forward = 1 vm.swappiness = 0 EOF
2. 安装Docker
由于在Kubernetes1.14的版本中,支持的版本有 1.13.1, 17.03, 17.06, 17.09, 18.06, 18.09,所以这里统一使用 Docker 18.09。
下载 docker-ce-18.09
的rpm包和阿里云上对应的 docker-ce.repo
的源,在所有node节点上直接安装:
mv docker-ce.repo /etc/yum.repos.d/ yum install docker-ce-18.09.5-3.el7.x86_64.rpm -y
在所有node节点启动docker,并配置自启动:
systemctl start docker systemctl enable docker
3. 创建目录
在所有主机上执行如下命令,创建所需目录:
mkdir -p /opt/kubernetes/{cfg,bin,ssl,log}
4. 准备Kubernetes软件包
从github下载kubernetes 1.14版本的二进制软件包,下载地址: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.14.md#server-binaries
下载如下软件包:
[root@master-1 tmp]# ll total 537520 -rw-r--r-- 1 root root 113938518 Jul 24 19:15 kubernetes-node-linux-amd64.tar.gz -rw-r--r-- 1 root root 433740362 Jul 24 19:09 kubernetes-server-linux-amd64.tar.gz
解压:
tar xf kubernetes-server-linux-amd64.tar.gz
5.准备etcd和flannel组件
从github下载etcd v3.3.12和flannel v0.11.0 :
wget https://github.com/etcd-io/etcd/releases/download/v3.3.12/etcd-v3.3.12-linux-amd64.tar.gz wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz
制作CA证书
Kubernetes支持使用多种方式生成证书,可以使用easyrsa, openssl 或 cfssl任一一种生成。
参考链接这里使用cfssl创建CA证书。
1.安装CFSSL
使用cfssl生成CA证书需要单独安装cfssl。
[root@master-1 ~]# cd /usr/local/src/ curl -L https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o /opt/kubernetes/bin/cfssl curl -L https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o /opt/kubernetes/bin/cfssljson curl -L https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o /opt/kubernetes/bin/cfssl-certinfo chmod +x /opt/kubernetes/bin/*
所有节点添加Kubernetes的bin目录到系统环境变量:
echo 'PATH=$PATH:/opt/kubernetes/bin' >>/etc/profile source /etc/profile
2.生成证书
- 创建需要的配置文件:
[root@master-1 ~]# cd /opt/kubernetes/ssl/ [root@master-1 ssl]# cfssl print-defaults config > config.json [root@master-1 ssl]# cfssl print-defaults csr > csr.json [root@master-1 ssl]# ll total 8 -rw-r--r-- 1 root root 567 Jul 26 00:05 config.json -rw-r--r-- 1 root root 287 Jul 26 00:05 csr.json [root@master-1 ssl]# mv config.json ca-config.json [root@master-1 ssl]# mv csr.json ca-csr.json
-
修改生成的文件为如下内容:
ca-config.json文件:
[root@master-1 ssl]# vim ca-config.json { "signing": { "default": { "expiry": "87600h" }, "profiles": { "kubernetes": { "usages": [ "signing", "key encipherment", "server auth", "client auth" ], "expiry": "87600h" } } } }
ca-csr.json文件:
[root@master-1 ssl]# vim ca-csr.json { "CN": "kubernetes", "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] }
- 生成证书(ca-key.pem)和秘钥(ca.pem):
[root@master-1 ssl]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca 2018/07/26 00:27:00 [INFO] generating a new CA key and certificate from CSR 2018/07/26 00:27:00 [INFO] generate received request 2018/07/26 00:27:00 [INFO] received CSR 2018/07/26 00:27:00 [INFO] generating key: rsa-2048 2018/07/26 00:27:01 [INFO] encoded CSR 2018/07/26 00:27:01 [INFO] signed certificate with serial number 479065525331838190845576195908271097044538206777 [root@master-1 ssl]# ll total 20 -rw-r--r-- 1 root root 386 Jul 26 00:16 ca-config.json -rw-r--r-- 1 root root 1001 Jul 26 00:27 ca.csr -rw-r--r-- 1 root root 255 Jul 26 00:20 ca-csr.json -rw------- 1 root root 1679 Jul 26 00:27 ca-key.pem -rw-r--r-- 1 root root 1359 Jul 26 00:27 ca.pem
- 分发证书到各个节点:
[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.45:/opt/kubernetes/ssl [root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.46:/opt/kubernetes/ssl [root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.47:/opt/kubernetes/ssl [root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.48:/opt/kubernetes/ssl [root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.49:/opt/kubernetes/ssl
HA 节点部署
这里选择两个Master节点部署Haproxy 和 keepalived, keepalived上需要添加监控haproxy应用的脚本。
keepalived 配置
- HA节点下载安装keepalive:
yum install keepalived -y
- 配置两个虚拟IP,一个用于k8s集群的apiserver代理,另一个用于nginx ingress入口(也可以单独配置),同时要设置对haproxy的状态判断,如果节点上的haproxy进程结束需要自动切换VIP到另一节点上, 主HA配置如下:
# cat /etc/keepalived/keepalived.conf ! Configuration File for keepalived vrrp_script check_haproxy { script "/etc/keepalived/check_haproxy.sh" interval 3 weight -20 } vrrp_instance K8S { state backup interface eth0 virtual_router_id 44 priority 200 advert_int 5 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.20.50 192.168.20.60 } track_script { check_haproxy } }
- 从HA配置如下:
! Configuration File for keepalived vrrp_script check_haproxy { script "/etc/keepalived/check_haproxy.sh" interval 3 weight -20 } vrrp_instance K8S { state backup interface eth0 virtual_router_id 44 priority 190 advert_int 5 authentication { auth_type PASS auth_pass 1111 } virtual_ipaddress { 192.168.20.50 192.168.20.60 } track_script { check_haproxy } }
- 在这两个节点上配置对应的监测脚本:
vim /etc/keepalived/check_haproxy.sh #!/bin/bash active_status=`netstat -lntp|grep haproxy|wc -l` if [ $active_status -gt 0 ]; then exit 0 else exit 1 fi
- 需要添加权限
chmod +x /etc/keepalived/check_haproxy.sh
部署Haproxy
- 需要先确认已经配置了内核参数:
echo 'net.ipv4.ip_nonlocal_bind = 1'>>/etc/sysctl.conf echo 'net.ipv4.ip_forward = 1'>>/etc/sysctl.conf sysctl -p
- 安装haproxy
yum install haproxy -y
- 配置haproxy, 我们为k8s集群设计的VIP为 192.168.20.50,使用4层代理的方式, 配置文件如下:
# cat /etc/haproxy/haproxy.cfg |egrep -v "^#" global log 127.0.0.1 local2 chroot /var/lib/haproxy pidfile /var/run/haproxy.pid maxconn 4000 user haproxy group haproxy daemon # turn on stats unix socket stats socket /var/lib/haproxy/stats defaults mode tcp # 修改默认为四层代理 log global option httplog option dontlognull option http-server-close option forwardfor except 127.0.0.0/8 option redispatch retries 3 timeout http-request 10s timeout queue 1m timeout connect 10s timeout client 1m timeout server 1m timeout http-keep-alive 10s timeout check 10s maxconn 3000 frontend main 192.168.20.50:6443 acl url_static path_beg -i /static /images /javascript /stylesheets acl url_static path_end -i .jpg .gif .png .css .js default_backend k8s-node backend k8s-node mode tcp # 修改为tcp balance roundrobin server k8s-node-1 192.168.20.44:6443 check # 三个master主机 server k8s-node-2 192.168.20.45:6443 check server k8s-node-3 192.168.20.46:6443 check
配置完成之后检查IP是否可以自动切换。
部署ETCD集群
1.安装etcd
执行如下命令,完成etcd的安装:
[root@master-1 ~]# cd /tmp/ [root@master-1 tmp]# tar xf etcd-v3.3.12-linux-amd64.tar.gz [root@master-1 tmp]# cd etcd-v3.3.12-linux-amd64 [root@master-1 tmp]# cp etcd* /opt/kubernetes/bin/ [root@master-1 tmp]# scp etcd* 192.168.20.45:/opt/kubernetes/bin/ [root@master-1 tmp]# scp etcd* 192.168.20.46:/opt/kubernetes/bin/
2.生成etcd的专属证书
1.创建etcd证书签名请求
[root@master-1 ~]# vim etcd-csr.json { "CN": "etcd", "hosts": [ "127.0.0.1", "192.168.20.44", "192.168.20.45", "192.168.20.46" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] }
2.生成etcd证书
[root@master-1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \ -ca-key=/opt/kubernetes/ssl/ca-key.pem \ -config=/opt/kubernetes/ssl/ca-config.json \ -profile=kubernetes etcd-csr.json | cfssljson -bare etcd
会生成如下文件:
[root@master-1 ~]# ll total 16 -rw-r--r-- 1 root root 1062 Jul 26 01:18 etcd.csr -rw-r--r-- 1 root root 287 Jul 26 00:50 etcd-csr.json -rw------- 1 root root 1679 Jul 26 01:18 etcd-key.pem -rw-r--r-- 1 root root 1436 Jul 26 01:18 etcd.pem
- 移动证书到ssl目录:
[root@master-1 ~]# cp etcd*.pem /opt/kubernetes/ssl [root@master-1 ~]# scp etcd*.pem 192.168.20.45:/opt/kubernetes/ssl [root@master-1 ~]# scp etcd*.pem 192.168.20.46:/opt/kubernetes/ssl
3.配置etcd
- 配置ETCD配置文件
master-1上的配置为:
[root@master-1 ~]# vim /opt/kubernetes/cfg/etcd.conf #[member] ETCD_NAME="etcd-node-1" ETCD_DATA_DIR="/var/lib/etcd/default.etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000" ETCD_LISTEN_PEER_URLS="https://192.168.20.44:2380" ETCD_LISTEN_CLIENT_URLS="https://192.168.20.44:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.20.44:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..." ETCD_INITIAL_CLUSTER="etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380" ETCD_INITIAL_CLUSTER_STATE="new" ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster" ETCD_ADVERTISE_CLIENT_URLS="https://192.168.20.44:2379" #[security] CLIENT_CERT_AUTH="true" ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem" PEER_CLIENT_CERT_AUTH="true" ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
master-2上的配置为:
[root@master-2 tmp]# vim /opt/kubernetes/cfg/etcd.conf #[member] ETCD_NAME="etcd-node-2" ETCD_DATA_DIR="/var/lib/etcd/default.etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000" ETCD_LISTEN_PEER_URLS="https://192.168.20.45:2380" ETCD_LISTEN_CLIENT_URLS="https://192.168.20.45:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.20.45:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..." ETCD_INITIAL_CLUSTER="etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380" ETCD_INITIAL_CLUSTER_STATE="new" ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster" ETCD_ADVERTISE_CLIENT_URLS="https://192.168.20.45:2379" #[security] CLIENT_CERT_AUTH="true" ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem" PEER_CLIENT_CERT_AUTH="true" ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
master-3上的配置为:
[root@master-3 ~]# vim /opt/kubernetes/cfg/etcd.conf #[member] ETCD_NAME="etcd-node-3" ETCD_DATA_DIR="/var/lib/etcd/default.etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000" ETCD_LISTEN_PEER_URLS="https://192.168.20.46:2380" ETCD_LISTEN_CLIENT_URLS="https://192.168.20.46:2379,https://127.0.0.1:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.20.46:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..." ETCD_INITIAL_CLUSTER="etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380" ETCD_INITIAL_CLUSTER_STATE="new" ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster" ETCD_ADVERTISE_CLIENT_URLS="https://192.168.20.46:2379" #[security] CLIENT_CERT_AUTH="true" ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem" PEER_CLIENT_CERT_AUTH="true" ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem" ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
在三个节点上创建etcd的systemd文件:
[root@master-1 ~]# vim /usr/lib/systemd/system/etcd.service [Unit] Description=etcd Documentation=https://github.com/coreos/etcd Conflicts=etcd.service Conflicts=etcd2.service [Service] Type=notify Restart=always RestartSec=5s LimitNOFILE=40000 TimeoutStartSec=0 WorkingDirectory=/var/lib/etcd EnvironmentFile=-/opt/kubernetes/cfg/etcd.conf # set GOMAXPROCS to number of processors ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /opt/kubernetes/bin/etcd" [Install] WantedBy=multi-user.target
- 启动ETCD服务,在三个节点执行如下命令:
mkdir /var/lib/etcd systemctl daemon-reload systemctl start etcd systemctl enable etcd
确认所以节点的etcd服务启动。
4.验证集群
[root@master-1 ~]# etcdctl --endpoints=https://192.168.20.44:2379 \ --ca-file=/opt/kubernetes/ssl/ca.pem \ --cert-file=/opt/kubernetes/ssl/etcd.pem \ --key-file=/opt/kubernetes/ssl/etcd-key.pem cluster-health member 32922a109cfe00b2 is healthy: got healthy result from https://192.168.20.46:2379 member 4fa519fdd3e64a84 is healthy: got healthy result from https://192.168.20.45:2379 member cab6e832332e8b2a is healthy: got healthy result from https://192.168.20.44:2379 cluster is healthy
Master节点部署
1.部署Kubernetes软件包
[root@master-1 ~]# cd /tmp/kubernetes/server/bin/ [root@master-1 bin]# cp kube-apiserver /opt/kubernetes/bin/ [root@master-1 bin]# cp kube-controller-manager /opt/kubernetes/bin/ [root@master-1 bin]# cp kube-scheduler /opt/kubernetes/bin/
2.生成API Server的认证文件
1.创建用于生成CSR的JSON文件,这里需要指定 HA代理的IP ,和集群的ClusterIP:
[root@master-1 ~]# cd /opt/kubernetes/ssl [root@master-1 ssl]# vim kubernetes-csr.json { "CN": "kubernetes", "hosts": [ "127.0.0.1", "192.168.20.50", "10.1.0.1", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] }
2.生成Kubernetes的证书和私钥
[root@master-1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \ -ca-key=/opt/kubernetes/ssl/ca-key.pem \ -config=/opt/kubernetes/ssl/ca-config.json \ -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes
- 将私钥分发到其它所有的node节点中:
[root@master-1 ssl]# scp kubernetes*.pem 192.168.20.46:/opt/kubernetes/ssl/ ...
- 创建 API Server使用的token文件
[root@master-1 ~]# head -c 16 /dev/urandom | od -An -t x | tr -d ' ' 197f33fcbbfab2d15603dcc4408358f5 [root@master-1 ~]# vim /opt/kubernetes/ssl/bootstrap-token.csv 197f33fcbbfab2d15603dcc4408358f5,kubelet-bootstrap,10001,"system:kubelet-bootstrap"
- 创建基础用户名,密码认证配置
[root@k8s-node-1 ~]# vim /opt/kubernetes/ssl/basic-auth.csv admin,admin,1 readonly,readonly,2
- 将ssl目录的文件拷贝到其它的master节点上
scp -r -p /opt/kubernetes/ssl/* k8s-node-1:/opt/kubernetes/ssl/ scp -r -p /opt/kubernetes/ssl/* k8s-node-2:/opt/kubernetes/ssl/ scp -r -p /opt/kubernetes/ssl/* k8s-node-3:/opt/kubernetes/ssl/
3.部署kube-apiserver
- 创建kube-apiserver的systemd文件
[root@k8s-node-1 ~]# vim /usr/lib/systemd/system/kube-apiserver.service [Unit] Description=Kubernetes API Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target [Service] ExecStart=/opt/kubernetes/bin/kube-apiserver \ --enable-admission-plugins=MutatingAdmissionWebhook,ValidatingAdmissionWebhook,NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,NodeRestriction \ --bind-address=192.168.20.44 \ --insecure-bind-address=127.0.0.1 \ --authorization-mode=Node,RBAC \ --runtime-config=rbac.authorization.k8s.io/v1 \ --kubelet-https=true \ --anonymous-auth=false \ --basic-auth-file=/opt/kubernetes/ssl/basic-auth.csv \ --enable-bootstrap-token-auth \ --token-auth-file=/opt/kubernetes/ssl/bootstrap-token.csv \ --service-cluster-ip-range=10.1.0.0/16 \ --service-node-port-range=20000-40000 \ --tls-cert-file=/opt/kubernetes/ssl/kubernetes.pem \ --tls-private-key-file=/opt/kubernetes/ssl/kubernetes-key.pem \ --client-ca-file=/opt/kubernetes/ssl/ca.pem \ --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \ --etcd-cafile=/opt/kubernetes/ssl/ca.pem \ --etcd-certfile=/opt/kubernetes/ssl/kubernetes.pem \ --etcd-keyfile=/opt/kubernetes/ssl/kubernetes-key.pem \ --etcd-servers=https://192.168.20.44:2379,https://192.168.20.45:2379,https://192.168.20.46:2379 \ --enable-swagger-ui=true \ --allow-privileged=true \ --audit-log-maxage=30 \ --audit-log-maxbackup=3 \ --audit-log-maxsize=100 \ --audit-log-path=/opt/kubernetes/log/api-audit.log \ --event-ttl=1h \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 Type=notify LimitNOFILE=65536 [Install] WantedBy=multi-user.target
- 启动kube-apiserver服务
[root@k8s-node-1 ~]# systemctl daemon-reload [root@k8s-node-1 ~]# systemctl start kube-apiserver [root@k8s-node-1 ~]# systemctl enable kube-apiserver
- 查看服务状态是否正常
[root@master-1 ~]# systemctl status kube-apiserver [root@master-1 ~]# netstat -lntp|grep kube-apiserver tcp 0 0 192.168.20.44:6443 0.0.0.0:* LISTEN 4289/kube-apiserver tcp 0 0 127.0.0.1:8080 0.0.0.0:* LISTEN 4289/kube-apiserver
4.部署controller-manager
- 生成controller-manager的systemd文件
[root@master-1 ~]# vim /usr/lib/systemd/system/kube-controller-manager.service [Unit] Description=Kubernetes Controller Manager Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] ExecStart=/opt/kubernetes/bin/kube-controller-manager \ --bind-address=127.0.0.1 \ --master=http://127.0.0.1:8080 \ --allocate-node-cidrs=true \ --service-cluster-ip-range=10.1.0.0/16 \ --cluster-cidr=10.2.0.0/16 \ --cluster-name=kubernetes \ --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \ --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \ --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \ --root-ca-file=/opt/kubernetes/ssl/ca.pem \ --leader-elect=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 [Install] WantedBy=multi-user.target
- 启动kube-controller-manager
[root@master-1 ~]# systemctl daemon-reload [root@master-1 ~]# systemctl start kube-controller-manager [root@master-1 ~]# systemctl enable kube-controller-manager
- 查看服务状态
[root@master-1 ~]# systemctl status kube-controller-manager [root@master-1 ~]# netstat -lntp|grep kube-con tcp 0 0 127.0.0.1:10252 0.0.0.0:* LISTEN 4390/kube-controlle
5.部署Kubernetes Scheduler
- 创建systemd文件:
[root@master-1 ~]# vim /usr/lib/systemd/system/kube-scheduler.service [Unit] Description=Kubernetes Scheduler Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] ExecStart=/opt/kubernetes/bin/kube-scheduler \ --address=127.0.0.1 \ --master=http://127.0.0.1:8080 \ --leader-elect=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 [Install] WantedBy=multi-user.target
- 启动服务
[root@master-1 ~]# systemctl daemon-reload [root@master-1 ~]# systemctl start kube-scheduler [root@master-1 ~]# systemctl enable kube-scheduler
- 查看服务状态
[root@master-1 ~]# systemctl status kube-scheduler [root@master-1 ~]# netstat -lntp|grep kube-scheduler tcp 0 0 127.0.0.1:10251 0.0.0.0:* LISTEN 4445/kube-scheduler
6. Master节点部署kube-proxy(可选)
(参见node节点部署部分,需要创建对应的kube-proxy家目录)
7. 使用上述方式,配置master-1和master-2
- 将master-1上的ssl,cfg,bin 文件拷贝到其它master节点的对应位置。
- 配置各个服务的启动文件,并启动。
8.部署kubectl命令行工具
- 安装二进制包
[root@master-1 ~]# cd /tmp/kubernetes/node/bin/ [root@master-1 bin]# cp kubectl /opt/kubernetes/bin/
2.创建admin证书签名
[root@master-1 ~]# vim /opt/kubernetes/ssl/admin-csr.json { "CN": "admin", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "system:masters", "OU": "System" } ] }
3.生成admin证书和私钥
[root@master-1 ~]# cd /opt/kubernetes/ssl/ [root@master-1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \ -ca-key=/opt/kubernetes/ssl/ca-key.pem \ -config=/opt/kubernetes/ssl/ca-config.json \ -profile=kubernetes admin-csr.json | cfssljson -bare admin
- 设置集群参数
[root@master-1 ~]# kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=https://192.168.20.50:6443 Cluster "kubernetes" set.
5.设置客户端认证参数:
[root@naster-1 ~]# kubectl config set-credentials admin \ --client-certificate=/opt/kubernetes/ssl/admin.pem \ --embed-certs=true \ --client-key=/opt/kubernetes/ssl/admin-key.pem User "admin" set.
6.设置上下文参数
[root@master-1 ~]# kubectl config set-context kubernetes \ --cluster=kubernetes \ --user=admin Context "kubernetes" created.
7.设置默认上下文:
[root@master-1 ~]# kubectl config use-context kubernetes Switched to context "kubernetes".
8.使用Kubectl工具查看当前状态:
[root@master-1 ~]# kubectl get cs NAME STATUS MESSAGE ERROR scheduler Healthy ok controller-manager Healthy ok etcd-1 Healthy {"health":"true"} etcd-2 Healthy {"health":"true"} etcd-0 Healthy {"health":"true"}
Node节点部署
1.安装所需的服务
将kubernetes-node-linux-amd64.tar.gz压缩包在node节点解压,执行如下操作
[root@k8s-node-1 ~]# cd /tmp/kubernetes/node/bin [root@k8s-node-1 bin]# cp kubelet kube-proxy /opt/kubernetes/bin/ [root@k8s-node-1 bin]# scp kubelet kube-proxy 192.168.20.48:/opt/kubernetes/bin/ [root@k8s-node-1 bin]# scp kubelet kube-proxy 192.168.20.49:/opt/kubernetes/bin/
2.配置角色和认证参数
- 在master-1上创建角色绑定
[root@master-1 ~]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap clusterrolebinding.rbac.authorization.k8s.io "kubelet-bootstrap" created
- 创建kubelet bootstrapping kubeconfig文件,设置集群参数
[root@master-1 ~]# kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=https://192.168.20.50:6443 \ --kubeconfig=bootstrap.kubeconfig Cluster "kubernetes" set.
3.设置客户端认证参数
[root@master-1 ~]# kubectl config set-credentials kubelet-bootstrap \ --token=197f33fcbbfab2d15603dcc4408358f5 \ --kubeconfig=bootstrap.kubeconfig User "kubelet-bootstrap" set.
4.设置上下文认证参数
[root@master-1 ~]# kubectl config set-context default \ --cluster=kubernetes \ --user=kubelet-bootstrap \ --kubeconfig=bootstrap.kubeconfig Context "default" created.
5.选择默认上下文
[root@master-1 ~]# kubectl config use-context default --kubeconfig=bootstrap.kubeconfig Switched to context "default"
6.执行上面的操作后,会在当前目录生成一个bootstrap.kubeconfig的config文件,将此文件分发到各节点:
[root@k8s-node-1 ~]# cp bootstrap.kubeconfig /opt/kubernetes/cfg/ [root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.47:/opt/kubernetes/cfg/ [root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.48:/opt/kubernetes/cfg/ [root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.49:/opt/kubernetes/cfg/
- 将master上更新的配置拷贝到其它master节点。
3.设置支持CNI
以下操作需要在所有node节点执行
- 设置Kubernetes对CNI的支持:
[root@k8s-node-2 ~]# mkdir -p /etc/cni/net.d [root@k8s-node-2 ~]# vim /etc/cni/net.d/10-default.conf { "name": "flannel", "type": "flannel", "delegate": { "bridge": "docker0", "isDefaultGateway": true, "mtu": 1400 } }
4.配置Kubelet服务
以下操作需要在所有node节点执行
- 创建kubelet服务配置文件
[root@k8s-node-2 ~]# mkdir /var/lib/kubelet [root@k8s-node-2 ~]# vim /usr/lib/systemd/system/kubelet.service [Unit] Description=Kubernetes Kubelet Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=docker.service Requires=docker.service [Service] WorkingDirectory=/var/lib/kubelet ExecStart=/opt/kubernetes/bin/kubelet \ --address=192.168.20.48 \ --hostname-override=192.168.20.48 \ --pod-infra-container-image=mirrorgooglecontainers/pause-amd64:3.1 \ --experimental-bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \ --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \ --cert-dir=/opt/kubernetes/ssl \ --network-plugin=cni \ --cni-conf-dir=/etc/cni/net.d \ --cni-bin-dir=/opt/kubernetes/bin/cni \ --cluster-dns=10.1.0.2 \ --cluster-domain=cluster.local. \ --hairpin-mode hairpin-veth \ --allow-privileged=true \ --fail-swap-on=false \ --logtostderr=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 [Install] WantedBy=multi-user.target
- 启动Kubelet
[root@k8s-node-2 ~]# systemctl daemon-reload [root@k8s-node-2 ~]# systemctl start kubelet [root@k8s-node-2 ~]# systemctl enable kubelet [root@k8s-node-2 ~]# systemctl status kubelet
- 在master节点上查看是否收到node节点的csr请求:
[root@master-1 ~]# kubectl get csr NAME AGE REQUESTOR CONDITION node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk 2m kubelet-bootstrap Pending
- 批准kubelet的TLS请求
[root@master-1 ~]# kubectl get csr|grep 'Pending' | awk 'NR>0{print $1}'| xargs kubectl certificate approve certificatesigningrequest.certificates.k8s.io "node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk" approved [root@kmaster-1 ~]# kubectl get csr NAME AGE REQUESTOR CONDITION node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk 11m kubelet-bootstrap Approved,Issued
- 之后查看node节点状态:
[root@master-1 ~]# kubectl get node NAME STATUS ROLES AGE VERSION 192.168.20.48 Ready <none> 35s v1.14.1
node节点上查看kubelet 服务
[root@k8s-node-2 ~]# netstat -lntp|grep kubelet tcp 0 0 127.0.0.1:10248 0.0.0.0:* LISTEN 7917/kubelet tcp 0 0 192.168.20.32:10250 0.0.0.0:* LISTEN 7917/kubelet tcp 0 0 192.168.20.32:10255 0.0.0.0:* LISTEN 7917/kubelet tcp 0 0 192.168.20.32:4194 0.0.0.0:* LISTEN 7917/kubelet
5.部署kube-proxy
1.配置kube-proxy使用LVS,所有节点执行:
yum install -y ipvsadm ipset conntrack
2.创建证书请求
[root@master-1 ~]# vim kube-proxy-csr.json { "CN": "system:kube-proxy", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] }
3.生成证书
[root@master-1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \ -ca-key=/opt/kubernetes/ssl/ca-key.pem \ -config=/opt/kubernetes/ssl/ca-config.json \ -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
4.分发证书到所有node节点
[root@master-1 ~]# cp kube-proxy*.pem /opt/kubernetes/ssl/ [root@master-1 ~]# scp kube-proxy*.pem 192.168.20.47:/opt/kubernetes/ssl/ [root@master-1 ~]# scp kube-proxy*.pem 192.168.20.48:/opt/kubernetes/ssl/ [root@master-1 ~]# scp kube-proxy*.pem 192.168.20.49:/opt/kubernetes/ssl/
5.创建kube-proxy配置文件
[root@k8s-node-2 ~]# kubectl config set-cluster kubernetes \ --certificate-authority=/opt/kubernetes/ssl/ca.pem \ --embed-certs=true \ --server=https://192.168.20.50:6443 \ --kubeconfig=kube-proxy.kubeconfig Cluster "kubernetes" set.
6.创建kube-proxy用户:
[root@k8s-node-2 ~]# kubectl config set-credentials kube-proxy \ --client-certificate=/opt/kubernetes/ssl/kube-proxy.pem \ --client-key=/opt/kubernetes/ssl/kube-proxy-key.pem \ --embed-certs=true \ --kubeconfig=kube-proxy.kubeconfig User "kube-proxy" set.
7.设置默认上下文:
[root@k8s-node-2 ~]# kubectl config set-context default \ --cluster=kubernetes \ --user=kube-proxy \ --kubeconfig=kube-proxy.kubeconfig Context "default" created.
8.切换上下文为default:
[root@k8s-node-2 ~]# kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig Switched to context "default".
9.分发kube-proxy.kubeconfig配置文件到所有
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.44:/opt/kubernetes/cfg/ [root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.45:/opt/kubernetes/cfg/ [root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.46:/opt/kubernetes/cfg/ [root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.47:/opt/kubernetes/cfg/ [root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.48:/opt/kubernetes/cfg/ [root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.459/opt/kubernetes/cfg/
10.创建kube-proxy服务配置文件
所有节点执行,注意配置文件中IP需要修改为本机对应的IP
[root@k8s-node-1 ~]# mkdir /var/lib/kube-proxy [root@k8s-node-1 ~]# vim /usr/lib/systemd/system/kube-proxy.service [Unit] Description=Kubernetes Kube-Proxy Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target [Service] WorkingDirectory=/var/lib/kube-proxy ExecStart=/opt/kubernetes/bin/kube-proxy \ --bind-address=192.168.20.47 \ --hostname-override=192.168.20.47 \ --kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig \ --masquerade-all \ --feature-gates=SupportIPVSProxyMode=true \ --proxy-mode=ipvs \ --ipvs-min-sync-period=5s \ --ipvs-sync-period=5s \ --ipvs-scheduler=rr \ --logtostderr=true \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 LimitNOFILE=65536 [Install] WantedBy=multi-user.target
11.启动服务
systemctl start kube-proxy systemctl enable kube-proxy systemctl status kube-proxy
12.查看服务状态,lvs状态
[root@k8s-node-1 ~]# ipvsadm -L -n IP Virtual Server version 1.2.1 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 10.1.0.1:443 rr -> 192.168.20.44:6443 Masq 1 0 0 -> 192.168.20.45:6443 Masq 1 0 0 -> 192.168.20.46:6443 Masq 1 1 0
所有node节点配置成功后可以看到如下结果:
[root@master-1 ~]# kubectl get node NAME STATUS ROLES AGE VERSION 192.168.20.47 Ready <none> 6d21h v1.14.1 192.168.20.48 Ready <none> 4d1h v1.14.1 192.168.20.49 Ready <none> 4d1h v1.14.1
Flannel 网络部署
所有节点都需要部署flannel。
1.创建Flannel证书
1.生成证书文件
[root@master-1 ~]# vim flanneld-csr.json { "CN": "flanneld", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "System" } ] }
2.生成证书
[root@master-1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \ -ca-key=/opt/kubernetes/ssl/ca-key.pem \ -config=/opt/kubernetes/ssl/ca-config.json \ -profile=kubernetes flanneld-csr.json | cfssljson -bare flanneld
3.分发证书
[root@master-1 ~]# cp flanneld*.pem /opt/kubernetes/ssl/ [root@master-1 ~]# scp flanneld*.pem {all-k8s-node}:/opt/kubernetes/ssl/
2.部署flannel
1.将之前下载的flannel压缩包解压,并分发到其它节点如下操作:
cp mk-docker-opts.sh flanneld /opt/kubernetes/bin/ scp mk-docker-opts.sh flanneld {all-k8s-node}:/opt/kubernetes/bin/
2.创建如下文件,分发到各个node节点:
[root@k8s-node-1 tmp]# vim remove-docker0.sh #!/bin/bash # Delete default docker bridge, so that docker can start with flannel network. # exit on any error set -e rc=0 ip link show docker0 >/dev/null 2>&1 || rc="$?" if [[ "$rc" -eq "0" ]]; then ip link set dev docker0 down ip link delete docker0 fi
[root@k8s-node-1 tmp]# cp remove-docker0.sh /opt/kubernetes/bin/ [root@k8s-node-1 tmp]# scp remove-docker0.sh 192.168.20.48:/opt/kubernetes/bin/ [root@k8s-node-1 tmp]# scp remove-docker0.sh 192.168.20.49:/opt/kubernetes/bin/
3.配置flannel
[root@k8s-node-1 ~]# vim /opt/kubernetes/cfg/flannel FLANNEL_ETCD="-etcd-endpoints=https://192.168.20.31:2379,https://192.168.20.32:2379,https://192.168.20.33:2379" FLANNEL_ETCD_KEY="-etcd-prefix=/kubernetes/network" FLANNEL_ETCD_CAFILE="--etcd-cafile=/opt/kubernetes/ssl/ca.pem" FLANNEL_ETCD_CERTFILE="--etcd-certfile=/opt/kubernetes/ssl/flanneld.pem" FLANNEL_ETCD_KEYFILE="--etcd-keyfile=/opt/kubernetes/ssl/flanneld-key.pem"
- 创建flannel服务文件
[root@k8s-node-1 ~]# vim /usr/lib/systemd/system/flannel.service [Unit] Description=Flanneld overlay address etcd agent After=network.target Before=docker.service [Service] EnvironmentFile=-/opt/kubernetes/cfg/flannel ExecStartPre=/opt/kubernetes/bin/remove-docker0.sh ExecStart=/opt/kubernetes/bin/flanneld ${FLANNEL_ETCD} ${FLANNEL_ETCD_KEY} ${FLANNEL_ETCD_CAFILE} ${FLANNEL_ETCD_CERTFILE} ${FLANNEL_ETCD_KEYFILE} ExecStartPost=/opt/kubernetes/bin/mk-docker-opts.sh -d /run/flannel/docker Type=notify [Install] WantedBy=multi-user.target RequiredBy=docker.service
5.分发创建的配置文件到各个节点:
scp /opt/kubernetes/cfg/flannel {all-k8s-node}:/opt/kubernetes/cfg/ scp /usr/lib/systemd/system/flannel.service {all-k8s-node}:/usr/lib/systemd/system/
3. Flannel CNI集成
1.下载CNI插件
wget https://github.com/containernetworking/plugins/releases/download/v0.7.5/cni-plugins-amd64-v0.7.5.tgz [root@k8s-node-1 tmp]# mkdir /opt/kubernetes/bin/cni [root@k8s-node-1 tmp]# tar xf cni-plugins-amd64-v0.7.5.tgz -C /opt/kubernetes/bin/cni
2.分发软件到各个节点:
[root@k8s-node-1 ~]# scp -r /opt/kubernetes/bin/cni/* {all-k8s-node}:/opt/kubernetes/bin/cni/
3.在etcd中创建key
[root@master-1 ~]# /opt/kubernetes/bin/etcdctl --ca-file /opt/kubernetes/ssl/ca.pem --cert-file /opt/kubernetes/ssl/flanneld.pem --key-file /opt/kubernetes/ssl/flanneld-key.pem \ --no-sync -C https://192.168.20.44:2379,https://192.168.20.45:2379,https://192.168.20.46:2379 \ mk /kubernetes/network/config '{ "Network": "10.2.0.0/16", "Backend": { "Type": "vxlan", "VNI": 1 }}' >/dev/null 2>&1
4.各个节点启动flannel
[root@k8s-node-1 ~]# chmod +x /opt/kubernetes/bin/* [root@k8s-node-1 ~]# systemctl daemon-reload [root@k8s-node-1 ~]# systemctl start flannel [root@k8s-node-1 ~]# systemctl enable flannel
配置Docker使用Flannel
1.修改docker的systemd的文件:
[Unit] #在Unit下面修改After和增加Requires After=network-online.target firewalld.service flannel.service Wants=network-online.target Requires=flannel.service [Service] #增加EnvironmentFile=-/run/flannel/docker Type=notify EnvironmentFile=-/run/flannel/docker ExecStart=/usr/bin/dockerd $DOCKER_OPTS
2.其它NODE节点也做相同的修改
[root@k8s-node-2 ~]# scp /usr/lib/systemd/system/docker.service {k8s-node}:/usr/lib/systemd/system/
3.重启docker, 出现docker0网卡,且在10.2.0.0/16网段,说明配置成功
[root@k8s-node-3 ~]# systemctl daemon-reload [root@k8s-node-3 ~]# systemctl restart docker [root@k8s-node-3 ~]# ip a| grep -A 3 'docker0' 7: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN link/ether 02:42:e9:2b:36:86 brd ff:ff:ff:ff:ff:ff inet 10.2.79.1/24 scope global docker0 valid_lft forever preferred_lft forever
插件部署
1.创建CoreDNS
- 创建coredns.yaml,内容如下:
apiVersion: v1 kind: ServiceAccount metadata: name: coredns namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: labels: kubernetes.io/bootstrapping: rbac-defaults addonmanager.kubernetes.io/mode: Reconcile name: system:coredns rules: - apiGroups: - "" resources: - endpoints - services - pods - namespaces verbs: - list - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: "true" labels: kubernetes.io/bootstrapping: rbac-defaults addonmanager.kubernetes.io/mode: EnsureExists name: system:coredns roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:coredns subjects: - kind: ServiceAccount name: coredns namespace: kube-system --- apiVersion: v1 kind: ConfigMap metadata: name: coredns namespace: kube-system labels: addonmanager.kubernetes.io/mode: EnsureExists data: Corefile: | .:53 { errors health kubernetes cluster.local. in-addr.arpa ip6.arpa { pods insecure upstream fallthrough in-addr.arpa ip6.arpa } prometheus :9153 proxy . /etc/resolv.conf cache 30 } --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: coredns namespace: kube-system labels: k8s-app: coredns kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile kubernetes.io/name: "CoreDNS" spec: replicas: 2 strategy: type: RollingUpdate rollingUpdate: maxUnavailable: 1 selector: matchLabels: k8s-app: coredns template: metadata: labels: k8s-app: coredns spec: serviceAccountName: coredns tolerations: - key: node-role.kubernetes.io/master effect: NoSchedule - key: "CriticalAddonsOnly" operator: "Exists" containers: - name: coredns image: coredns/coredns:1.4.0 imagePullPolicy: IfNotPresent resources: limits: memory: 170Mi requests: cpu: 100m memory: 70Mi args: [ "-conf", "/etc/coredns/Corefile" ] volumeMounts: - name: config-volume mountPath: /etc/coredns ports: - containerPort: 53 name: dns protocol: UDP - containerPort: 53 name: dns-tcp protocol: TCP livenessProbe: httpGet: path: /health port: 8080 scheme: HTTP initialDelaySeconds: 60 timeoutSeconds: 5 successThreshold: 1 failureThreshold: 5 dnsPolicy: Default volumes: - name: config-volume configMap: name: coredns items: - key: Corefile path: Corefile --- apiVersion: v1 kind: Service metadata: name: coredns namespace: kube-system labels: k8s-app: coredns kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile kubernetes.io/name: "CoreDNS" spec: selector: k8s-app: coredns clusterIP: 10.1.0.2 ports: - name: dns port: 53 protocol: UDP - name: dns-tcp port: 53 protocol: TCP
- 执行此文件:
[root@master-1 tmp]# kubectl create -f coredns.yaml
- 确认DNS服务运行:
[root@master-1 ~]# kubectl get pod -n kube-system -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES coredns-76fcfc9f65-9fkfh 1/1 Running 2 3d7h 10.2.45.3 192.168.20.49 <none> <none> coredns-76fcfc9f65-zfplt 1/1 Running 1 3d6h 10.2.24.2 192.168.20.48 <none> <none>
2. 部署Dashboard
1.执行目录中的yaml,部署Dashboard:
[root@master-1 ~]# ll /tmp/dashboard/ total 20 -rw-r--r-- 1 root root 356 Jul 27 03:43 admin-user-sa-rbac.yaml -rw-r--r-- 1 root root 4253 Jul 27 03:47 kubernetes-dashboard.yaml -rw-r--r-- 1 root root 458 Jul 27 03:49 ui-admin-rbac.yaml -rw-r--r-- 1 root root 477 Jul 27 03:50 ui-read-rbac.yaml [root@master-1 ~]# kubectl create -f /tmp/dashboard/
2.确认服务是否正常运行:
[root@master-1 ~]# kubectl get pod -n kube-system NAME READY STATUS RESTARTS AGE coredns-76fcfc9f65-9fkfh 1/1 Running 2 3d7h coredns-76fcfc9f65-zfplt 1/1 Running 1 3d6h kubernetes-dashboard-68ddcc97fc-w4bxf 1/1 Running 1 3d2h [root@master-1 ~]# kubectl cluster-info Kubernetes master is running at https://192.168.20.50:6443 CoreDNS is running at https://192.168.20.50:6443/api/v1/namespaces/kube-system/services/coredns:dns/proxy kubernetes-dashboard is running at https://192.168.20.50:6443/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
3.根据提示信息,使用dashboard的url,登录,账号admin/admin, 使用如下命令生成token:
[root@master-1 ~]# kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')
4.复制token,选择使用令牌的方式登录:
3. Heapster 部署 (可选)
1.使用如下文件部署Heastper:
[root@master-1 ~]# ll heastper/ total 12 -rw-r--r-- 1 root root 2306 Jul 26 20:28 grafana.yaml -rw-r--r-- 1 root root 1562 Jul 26 20:29 heapster.yaml -rw-r--r-- 1 root root 1161 Jul 26 20:29 influxdb.yaml [root@k8s-node-1 ~]# kubectl create -f heastper/
- 登录dashboard,查看石头出现资源利用率的图表。
- 使用
kubectl cluster-info
命令,查看当前服务的url地址。
补充说明
etcd无证书配置说明
在实际的生产环境中,如果都是使用的内网环境,可以将etd集群配置为无证书的模式,这样在配置和后续的故障恢复中会更简单。
etcd无证书配置需要使用http访问,安装上述文档,需要修改如下配置:
- etcd的配置文件注释掉安全证书部分,并将所有url改为http方式:
# cat /opt/kubernetes/cfg/etcd.conf #[member] ETCD_NAME="etcd-node-1" ETCD_DATA_DIR="/var/lib/etcd/default.etcd" #ETCD_SNAPSHOT_COUNTER="10000" #ETCD_HEARTBEAT_INTERVAL="100" #ETCD_ELECTION_TIMEOUT="1000" ETCD_LISTEN_PEER_URLS="http://192.168.20.31:2380" ETCD_LISTEN_CLIENT_URLS="http://192.168.20.31:2379" #ETCD_MAX_SNAPSHOTS="5" #ETCD_MAX_WALS="5" #ETCD_CORS="" #[cluster] ETCD_INITIAL_ADVERTISE_PEER_URLS="http://192.168.20.31:2380" # if you use different ETCD_NAME (e.g. test), # set ETCD_INITIAL_CLUSTER value for this name, i.e. "test=http://..." ETCD_INITIAL_CLUSTER="etcd-node-1=http://192.168.20.31:2380,etcd-node-2=http://192.168.20.32:2380,etcd-node-3=http://192.168.20.33:2380" ETCD_INITIAL_CLUSTER_STATE="new" ETCD_INITIAL_CLUSTER_TOKEN="k8s-etcd-cluster" ETCD_ADVERTISE_CLIENT_URLS="http://192.168.20.31:2379" #[security] #CLIENT_CERT_AUTH="true" #ETCD_CA_FILE="/opt/kubernetes/ssl/ca.pem" #ETCD_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" #ETCD_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem" #PEER_CLIENT_CERT_AUTH="true" #ETCD_PEER_CA_FILE="/opt/kubernetes/ssl/ca.pem" #ETCD_PEER_CERT_FILE="/opt/kubernetes/ssl/etcd.pem" #ETCD_PEER_KEY_FILE="/opt/kubernetes/ssl/etcd-key.pem"
- fannel网络部分注释掉etcd的证书配置参数,并将URL该位http:
# cat /opt/kubernetes/cfg/flannel FLANNEL_ETCD="-etcd-endpoints=http://192.168.20.31:2379,http://192.168.20.32:2379,http://192.168.20.33:2379" FLANNEL_ETCD_KEY="-etcd-prefix=/kubernetes/network" #FLANNEL_ETCD_CAFILE="--etcd-cafile=/opt/kubernetes/ssl/ca.pem" #FLANNEL_ETCD_CERTFILE="--etcd-certfile=/opt/kubernetes/ssl/flanneld.pem" #FLANNEL_ETCD_KEYFILE="--etcd-keyfile=/opt/kubernetes/ssl/flanneld-key.pem"
3.kube-apiserver中去掉etcd的证书配置,这个文件中需要把参数直接删除,并将url改为http:
# cat /usr/lib/systemd/system/kube-apiserver.service [Unit] Description=Kubernetes API Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target [Service] ExecStart=/opt/kubernetes/bin/kube-apiserver \ --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,NodeRestriction \ --bind-address=192.168.20.31 \ --insecure-bind-address=127.0.0.1 \ --authorization-mode=Node,RBAC \ --runtime-config=rbac.authorization.k8s.io/v1 \ --kubelet-https=true \ --anonymous-auth=false \ --basic-auth-file=/opt/kubernetes/ssl/basic-auth.csv \ --enable-bootstrap-token-auth \ --token-auth-file=/opt/kubernetes/ssl/bootstrap-token.csv \ --service-cluster-ip-range=10.1.0.0/16 \ --service-node-port-range=20000-40000 \ --tls-cert-file=/opt/kubernetes/ssl/kubernetes.pem \ --tls-private-key-file=/opt/kubernetes/ssl/kubernetes-key.pem \ --client-ca-file=/opt/kubernetes/ssl/ca.pem \ --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \ --etcd-servers=http://192.168.20.31:2379,http://192.168.20.32:2379,http://192.168.20.33:2379 \ --enable-swagger-ui=true \ --allow-privileged=true \ --audit-log-maxage=30 \ --audit-log-maxbackup=3 \ --audit-log-maxsize=100 \ --audit-log-path=/opt/kubernetes/log/api-audit.log \ --event-ttl=1h \ --v=2 \ --logtostderr=false \ --log-dir=/opt/kubernetes/log Restart=on-failure RestartSec=5 Type=notify LimitNOFILE=65536 [Install] WantedBy=multi-user.target
4.分别重启flannel、kubelet、kube-apiserver等服务。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- docker部署rabbitmq集群
- 部署Ceph集群--jluocc
- 部署高可用Kubernetes集群
- Eureka使用及集群部署
- 使用Docker部署RabbitMQ集群
- GreenPlum 5.10.0 集群部署
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
电脑报(上下册)
电脑报社 / 西南师范大学出版社 / 2006-12-01 / 45.00元
全套上、下两册,浓缩2006年电脑报精华文章。附录包含70余篇简明IT应用指南,覆盖软件、硬盘、数码、网络四大领域。配赠权威实用的2006-2007中国计算机年鉴DVD光盘,近1.4GB海量信息与资源超值奉献。8大正版超值软件,涵盖系统维护、系统安全、办公应用、多媒体娱乐等四大领域。微软、腾讯、友立等知名厂商,新年献礼。提供2006-2007全系列硬件、数码产品资讯,兼具知识性与资料性。官方网站全......一起来看看 《电脑报(上下册)》 这本书的介绍吧!