spark kafka consumer 消费数据的二种方式

栏目: 编程工具 · 发布时间: 6年前

内容简介:如果实时的从kafka取数据,通过spark入hdfs,会产生很多的task,在hdfs上会产生非常多的小文件。浪费硬盘空间不说,在用spark进行数据分析的时间,非常耗spark节点的内存。最好不要实时的入库,间断去运行。这样会尽量减少小文件的产生。但是不能根本上解决小问题,最终还是通过CombineFileInputFormat来解决,这个后面的文章,会单独说。这种方式也是最容易想到的一种方式,spark-submit提交后,启动sparksession,启动kafka consumer,消费数据。这儿

如果实时的从kafka取数据,通过spark入hdfs,会产生很多的task,在hdfs上会产生非常多的小文件。浪费硬盘空间不说,在用spark进行数据分析的时间,非常耗spark节点的内存。

最好不要实时的入库,间断去运行。这样会尽量减少小文件的产生。但是不能根本上解决小问题,最终还是通过CombineFileInputFormat来解决,这个后面的文章,会单独说。

1,采crontab的方式

这种方式也是最容易想到的一种方式,spark-submit提交后,启动sparksession,启动kafka consumer,消费数据。这儿有一点要注意,数据入hdfs后,关闭sparksession,kafka consumer,这样可以节约系统资源。

2,采用akka包,处理方式,根crontab差不多(推荐)

pom.xml加载包,注意和当前scala版本要对的上,不然打包时会报错

<dependency>
 <groupId>com.typesafe.akka</groupId>
 <artifactId>akka-actor_2.11</artifactId>
 <version>2.5.9</version>
</dependency>

例子:

object test {
    def main(args: Array[String]): Unit = {
        。。。。。。。。。。。。。。。。省略。。。。。。。。。。。。。。。
        val consumer: KafkaConsumer[String, String] = new KafkaConsumer[String, String](pros)
        /*这里填写主题名称*/
        consumer.subscribe(util.Arrays.asList(table))
        val system = akka.actor.ActorSystem("system")
        system.scheduler.schedule(0 seconds, 180 seconds)(taskerPc.saveData(args,consumer))
    }

    object taskerPc {
        def saveData(args: Array[String],consumer: KafkaConsumer[String,String]): Unit = {
            。。。。。。。。。。。。。。。。省略。。。。。。。。。。。。。。。
            /*
            *
            * spark.sql.warehouse.dir hdfs://主数据节点别名或者ip:post指定单个主机/
            * */
            val spark = new sql.SparkSession.Builder()
                    .config("spark.sql.warehouse.dir", func.cnf("spark.sql.warehouse.dir"))
                    .enableHiveSupport()
                    .appName(table)
                    .getOrCreate()

            val records: ConsumerRecords[String, String] = consumer.poll(Duration.ofSeconds(3))
            。。。。。。。。。。。。。。。。省略。。。。。。。。。。。。。。。
        }
    }
}

scala main函数中,开起了一个kafka consumer,会每隔180秒,去调用函数saveData,这种方式,consumer是不能关闭的,一关闭就无法消费topic里面的数据了。如果把val consumer: KafkaConsumer[String, String] = new KafkaConsumer[String, String](pros),放到了saveData中,就要关闭consumer,不然就会出现Attempt to heartbeat failed since group is rebalancing问题。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数据结构与算法

数据结构与算法

2009-8 / 32.00元

《数据结构与算法》系统地介绍了数据结构的基本概念和基本算法,主要内容包括:绪论,线性表,栈与队列,串,数组、特殊矩阵和广义表,树,图,排序,查找,算法的分析与设计,实验与上机指导。《数据结构与算法》特别注重突出应用性和实践性,实例和习题丰富,并在附录中给出了各章习题的答案。 《数据结构与算法》适合作为应用型本科院校和成人教育计算机专业数据结构课程的教材,也可作为数据结构培训班的教材以及软件从......一起来看看 《数据结构与算法》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

html转js在线工具
html转js在线工具

html转js在线工具