内容简介:作者 | 法纳斯特
作者 | 法纳斯特
责编 | 郭芮
最近正值复联4上映,笔者也发现了一个有趣的网站,主要是关于漫威人物、漫威电影的图谱。
https://graphics.straitstimes.com/STI/STIMEDIA/Interactives/2018/04/marvel-cinematic-universe-whos-who-interactive/index.html
其实之前笔者也利用了有关Graph的库实现了一波人物的关系分析,只不过分析结果比较粗糙而已~下面是网站的概况, 网站是基于Graph技术开发的。, 大家可以一览。
那么人家能做出这么酷炫的关系图,我们自己能不能实现呢?本文就利用网站提供的数据,使用Neo4j(NOSQL图形数据库)进行实战一波。
获取分析
人物及人物关联信息从网站上获取,具体接口如下:
数据为json格式,分别在「characters」和「relationship」中。
这里的信息是分别指托尼·斯达克,关系「0」为朋友,斯蒂文·罗杰斯。
数据获取
具体代码如下:
import json
import requests
headers = {
'user-agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'
}
url = 'https://graphics.straitstimes.com/STI/STIMEDIA/Interactives/2018/04/marvel-cinematic-universe-whos-who-interactive/data/marvel-data.json'
response = requests.get(url=url, headers=headers)
result = json.loads(response.text)
num = 0
names = []
item = {0: 'friend', 1: 'enemy', 2: 'creation', 3: 'family', 4: 'work', 5: 'love'}
for i in result['relationship']:
subject = result['relationship'][i]['id']
object = result['relationship'][i]['target_id']
if subject not in names:
names.append(subject)
if object not in names:
names.append(object)
relation = int(result['relationship'][i]['relationship'])
with open('relation_message.csv', 'a+') as f:
f.write(subject + ',' + object + ',' + item[relation] + '\n')
for j in names:
num += 1
with open('names_message.csv', 'a+') as f:
f.write(j + ',' + str(num) + '\n')
for k in result['characters']:
id = result['characters'][k]['id']
name = result['characters'][k]['name']
status = result['characters'][k]['status']
species = result['characters'][k]['species']
with open('message.csv', 'a+') as f:
f.write(id + ',' + name + ',' + status + ',' + species + '\n')
最后成功获取数据。
人物名为简称,共计182个人物。
1144条人物关系数据,4大类型,下面是182个人物的一些详情信息:
包含了人物的名字及简称,存活状态,人物属性。
数据可视化
下面通过Neo4j对人物关系进行可视化,Neo4j的安装这里就不细说了,大家可以自行百度。
开启Neo4j服务后,登陆Neo4j网站,初始化界面如下:
先加载第一个文件:
具体代码如下:
LOAD CSV WITH HEADERS FROM 'file:///names_message.csv' AS data CREATE (:people{name:data.name, id:data.id});
下面加载第二个文件:
具体代码如下:
LOAD CSV WITH HEADERS FROM "file:///relation_message.csv" AS relations
MATCH (entity1:people{name:relations.subject}) , (entity2:people{name:relations.object})
CREATE (entity1)-[:rel{relation: relations.relation}]->(entity2)
点击1144按钮处,取消限制数,再点击全屏。
这里大致能看出来漫威的人物聚集情况,第一大反派灭霸(thanos),原来这么孤立的。
这里由于人物太多,造成观察不便,所以对结果进行一些筛选,比如筛选托尼·斯达克的朋友,运行下面的代码。
match p=(n:people{name:"tonys"})-[:rel{relation:"friend"}]->() return p;
得到下图结果:
其中「thor」为「雷神」,「stever」为「美队」,「blackw」为「黑寡妇」,「vision」为「幻视」,「peterp」为「蜘蛛侠」,「bruceb」为「绿巨人」。
下面再来看一下美队的女友吧。
佩吉·卡特和她的侄女莎朗·卡特,据说两人样貌极为相像。
总结
本次只是对Neo4j的一些简单操作,后期或许会去深入了解。 此外漫威的这些人物信息,还可以玩出很多花样的。
也 希望大家能去动手尝试尝试,做一枚硬核铁粉~
作者:法纳斯特,Python爱好者,专注爬虫,数据分析及可视化。
声明:本文首发个人公众号法纳斯特,作者投稿,版权归其个人所有。
【END】
作为码一代,想教码二代却无从下手:
听说少儿编程很火,可它有哪些好处呢?
孩子多大开始学习比较好呢?又该如何学习呢?
最新的编程教育政策又有哪些呢?
下面给大家介绍CSDN新成员: 极客宝宝(ID: geek_baby)
戳他了解更多↓↓↓
热 文推 荐
☞ 她说:为啥 程序员 都特想要机械键盘?这答案我服!
System.out.println("点个在看吧!");
console.log("点个在看吧!");
print("点个在看吧!");
printf("点个在看吧!\n");
cout << "点个在看吧!" << endl;
Console.WriteLine("点个在看吧!");
Response.Write("点个在看吧!");
alert("点个在看吧!")
echo "点个在看吧!"
你点的每个“在看”,我都认真当成了喜欢
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Probability and Computing: Randomization and Probabilistic Techn
Michael Mitzenmacher、Eli Upfal / Cambridge University Press / 2017-7-3 / USD 62.23
Greatly expanded, this new edition requires only an elementary background in discrete mathematics and offers a comprehensive introduction to the role of randomization and probabilistic techniques in m......一起来看看 《Probability and Computing: Randomization and Probabilistic Techn》 这本书的介绍吧!