算法:零钱兑换

栏目: 编程工具 · 发布时间: 5年前

内容简介:给定不同面额的硬币(coins)和一个总金额(amount) 。写一个函数来计算可以凑成总金额所需的最少的硬币个数,如果没有任何一种硬币组合能满足,返回 -1。输入:coins = [1, 2, 5], amount = 11输出:3 (5+5+1)

给定不同面额的硬币(coins)和一个总金额(amount) 。写一个函数来计算可以凑成总金额所需的最少的硬币个数,如果没有任何一种硬币组合能满足,返回 -1。

示例1

输入:coins = [1, 2, 5], amount = 11

输出:3 (5+5+1)

示例2

输入:coins = [2], amount = 3

输出:-1 (无法满足)

解决方案

暴力破解

暴力破解即穷举,把各种可能组成总金额的情况都匹配一遍,得到所有满足的组合,然后取硬币数量最少的那组。

实现思路

剩余金额减去当前使用的硬币金额

如果大于 0 ,继续使用硬币来组合;

如果等于 0 ,匹配完成,将当前组使用的硬币数与最小组合硬币数对比,取较小者;

如果小于 0 ,直接淘汰。

算法:零钱兑换

参考代码

public int CoinChange(int[] coins, int amount)
{
	// 如果输入的金额小于等于0,返回0
	if (amount <= 0) return 0;

	// 设置初始值为 amount + 1,实际不存在这种情况的,最坏的情况是 amount 
	var minCount = amount + 1;

	for (int i = 0; i < coins.Length; i++)
	{
		Cal(amount, coins, coins[i], new List<int>(), ref minCount);
	}
	return minCount == amount + 1 ? -1 : minCount;
}

public void Cal(int amount, int[] coins, int coin, List<int> curCoins, ref int minCount)
{
	// 剩余金额-使用的硬币金额, 得到新的剩余金额
	var leftAmount = amount - coin;

	// 如果等于0,说明找到了一组满足的组合
	if (leftAmount == 0)
	{
		curCoins.Add(coin);

		// 如果当前组使用的硬币数量小于当前最小组合的硬币数量,重置最小值
		if (curCoins.Count < minCount)
		{
			minCount = curCoins.Count;
		}
	}
	// 如果剩余金额大于0,说明还继续获取新的硬币加入集合
	else if (leftAmount > 0)
	{
		// 如果当前组的总硬币数量已经大于当前最小组合的硬币数量,就不需要在往下找了
		if (curCoins.Count >= minCount)
		{
			return;
		}

		// 继续下一次
		for (int i = 0; i < coins.Length; i++)
		{
			var newCoins = new List<int>(curCoins);
			newCoins.Add(coin);
			Cal(leftAmount, coins, coins[i], newCoins, ref minCount);
		}
	}
}

结论

从上图可以看出,获得所有可能组合的路线情况非常多,当 amount 值较小时复杂度还不算明显,随着 amount 越大,路线的深度(对应代码递归深度)会指数级增加(时间复杂度:2^n),所以当 amount 较大时这种方式必然不可取。

贪心

一般的贪心算法是先使用大币值,超界了就改用小币值,币值递减。

本题的币值是 [1,2,5],必然能用 2 肯定不会用 1,所以贪心没问题。但如果币值是 [1,5,6],当要组合总金额为 20 ,按贪心大币值的方式 6×3+1×2 = 20,需要使用 5 个硬币,而如果直接使用 5×4 = 20 只需要 4 个硬币,所以贪心并不合适,这里就先放弃该方案了。

动态规范

实现思路

定义 dp[i](dp[0] = 0)为组合成 i 时需要的最少硬币数,那么继续向前推就是 dp[i] = dp(i - coin[j]) 需要最少硬币数 + 1, + 1 是代表使用 coin[j] 算一次。

假设 i = 1:

当使用1币值组合,既 dp[1] = dp[0] + 1;

假设 i = 2:

当使用1币值组合,既 dp[2] = dp[1] + 1;

当使用2币值组合,既 dp[2] = dp[0] + 1;

假设 i = 3:

当使用1币值组合,既 dp[3] = dp[2] + 1;

当使用2币值组合,既 dp[3] = dp[1] + 1;

……

假设 i = 6:

当使用1币值组合,既 dp[6] = dp[5] + 1;

当使用2币值组合,既 dp[6] = dp[4] + 1;

当使用5币值组合,既 dp[6] = dp[1] + 1;

最终 dp[6] 取值为这 3 种情况的最小值。

动态规划的思路是将大问题化为子问题来解决,然后逐渐往大递推,所以得到最终的动态规划方程式为: dp[i] = Math.Min(dp[i], dp[i - coins[j]] + 1) ,dp[i] 的值可能会随着 coins[j] 不同而改变,所以需要将 dp[i] 和 dp[i - coins[j]] + 1 中较小值重新赋给 dp[i]。

参考代码

public int CoinChange(int[] coins, int amount)
{
	var dp = new int[amount + 1];
	// dp[0] 为 0,其他默认为 amount + 1(实际是不可能的),为了方便取对比结果中的最小值
	for (int i = 1; i < dp.Length; i++)
	{
		dp[i] = amount + 1;
	}

	// 计算 1~amount 每项 dp[i] 的值
	for (int i = 1; i <= amount; i++)
	{
		for (int j = 0; j < coins.Length; j++)
		{
			// 如果i能使用存在的面额来组合,得到每种面值组合后的最小值
			if (coins[j] <= i)
			{
				dp[i] = Math.Min(dp[i], dp[i - coins[j]] + 1);
			}
		}
	}

	// 如果 dp[amount] 是 amount + 1 ,代表没找到组合结果,否则返回组合成 amount 需要的最少硬币数 dp[amount]
	return dp[amount] > amount ? -1 : dp[amount];
}

以上所述就是小编给大家介绍的《算法:零钱兑换》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Art of Computer Programming, Volume 2

The Art of Computer Programming, Volume 2

Knuth, Donald E. / Addison-Wesley Professional / 1997-11-04 / USD 79.99

Finally, after a wait of more than thirty-five years, the first part of Volume 4 is at last ready for publication. Check out the boxed set that brings together Volumes 1 - 4A in one elegant case, and ......一起来看看 《The Art of Computer Programming, Volume 2》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试