网络爬虫精要

栏目: 编程工具 · 发布时间: 5年前

内容简介:repo:网络爬虫是一种按照一定的规则,自动地抓取网站信息的程序或者脚本。本文以Python语言为例简要谈谈爬虫是如何编写的。

repo: github.com/alphardex/p…

网络爬虫是一种按照一定的规则,自动地抓取网站信息的程序或者脚本。

本文以 Python 语言为例简要谈谈爬虫是如何编写的。

如何爬取网站信息

写爬虫之前,我们必须确保能够爬取目标网站的信息。

不过在此之前必须弄清以下三个问题:

  1. 网站是否已经提供了api
  2. 网站是静态的还是动态的
  3. 网站是否有反爬的对策

情形1:开放api的网站

一个网站倘若开放了api,那你就可以直接GET到它的json数据。

比如xkcd的about页就提供了api供你下载

import requests
requests.get('https://xkcd.com/614/info.0.json').json()
复制代码

那么如何判断一个网站是否开放api呢?有3种方法:

  1. 在站内寻找api入口
  2. 用搜索引擎搜索“某网站 api”
  3. 抓包。有的网站虽然用到了ajax(比如果壳网的瀑布流文章,亦或是unsplash的瀑布流图片),但是通过抓包还是能够获取XHR里的json数据的,不要傻乎乎地去用selenium,反而会降低效率。

怎么抓包:F12 - Network - F5刷新

实际上,app的数据也可以通过抓包来获取。

app抓包

安装fiddler并启动,打开Tools-Options-Connections,将Allow remote computers to connect打上勾并重启fiddler。

命令行上输入ipconfig,查看自己网络的ipv4地址,在手机的网络上设置HTTP代理,端口为8888。

这时虽说能抓到数据,但都是HTTP的,而app的大部分数据都是HTTPS的。

在Options-HTTPS中将Decrypt HTTPS traffic打上勾。

以ios系统为例,在Safari浏览器中输入http://ipv4:8888,下载证书并安装。

这样就能抓到HTTPS数据啦!

情形2:不开放api的网站

如果此网站是静态页面,那么你就可以解析它的HTML。

解析库强烈推荐parsel,不仅语法和css选择器类似,而且速度也挺快,Scrapy用的就是它。

你需要了解一下css选择器的语法(xpath也行),并且学会看网页的审查元素

比如获取konachan的所有原图链接

from parsel import Selector
res = requests.get('https://konachan.com/post')
tree = Selector(text=res.text)
imgs = tree.css('a.directlink::attr(href)').extract()
复制代码

如果此网站是动态页面,先用selenium来渲染JS,再用HTML解析库来解析driver的page_source。

比如获取hitomi.la的数据(这里把chrome设置成了无头模式)

from selenium import webdriver
options = webdriver.ChromeOptions()
options.add_argument('--headless')
driver = webdriver.Chrome(options=options)
driver.get('https://hitomi.la/type/gamecg-all-1.html')
tree = Selector(text=driver.page_source)
gallery_content = tree.css('.gallery-content > div')
复制代码

情形3:反爬的网站

目前的反爬策略常见的有:验证码、登录、封ip等。

验证码:利用打码平台破解(如果硬上的话用opencv或keras训练图)

登录:利用requests的post或者selenium模拟用户进行模拟登陆

封ip:买些代理ip(免费ip一般都不管用),requests中传入proxies参数即可

其他防反爬方法:伪装User-Agent,禁用cookies等

如何编写结构化的爬虫

爬虫的结构很简单,无非就是创造出一个tasklist,对tasklist里的每一个task调用crawl函数。

大多数网页的url构造都是有规律的,你只需根据它用列表推倒式来构造出tasklist

对于那些url不变的动态网页,先考虑抓包,不行再用selenium点击下一页

如果追求速度的话,可以考虑用concurrent.futures或者asyncio等库。

import requests
from parsel import Selector
from concurrent import futures

domain = 'https://www.doutula.com'

def crawl(url):
    res = requests.get(url)
    tree = Selector(text=res.text)
    imgs = tree.css('img.lazy::attr(data-original)').extract()
    # save the imgs ...


if __name__ == '__main__':
    tasklist = [f'{domain}/article/list/?page={i}' for i in range(1, 551)]
    with futures.ThreadPoolExecutor(50) as executor:
        executor.map(crawl, tasklist)
复制代码

数据存储的话,看需求,存到数据库中的话只需熟悉对应的驱动即可。

常用的数据库驱动有: pymysql (MySQL), pymongo (MongoDB)

框架

读到这里,相信你已经对网络爬虫的结构有了个清晰的认识,可以去上手框架了。

looter 是本人写的一个轻量级框架,适合中小型项目;比较大型的项目建议用 scrapy


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

矩阵计算

矩阵计算

Gene H. Golub、Charles F. Van Loan / 袁亚湘 / 人民邮电出版社 / 2009 / 89.00元

本书是国际上数值计算方面的权威著作,有“圣经”之称。被美国加州大学、斯坦福大学、华盛顿大学、芝加哥大学、中国科学院研究生院等很多世界知名学府用作相关课程的教材或主要参考书。 本书系统地介绍了矩阵计算的基本理论和方法。书中的许多算法都有现成的软件包实现,每节后还附有习题,并有注释和大量参考文献,非常有助于自学。一起来看看 《矩阵计算》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具