内容简介:PriorityBlockingQueue是java并发包下的优先级阻塞队列,它是线程安全的,如果让你来实现你会怎么实现它呢?还记得我们前面介绍过的PriorityQueue吗?点击链接直达【还记得优先级队列一般使用什么来实现吗?点击链接直达【
PriorityBlockingQueue是 java 并发包下的优先级阻塞队列,它是线程安全的,如果让你来实现你会怎么实现它呢?
还记得我们前面介绍过的PriorityQueue吗?点击链接直达【 死磕 java集合之PriorityQueue源码分析 】
还记得优先级队列一般使用什么来实现吗?点击链接直达【 拜托,面试别再问我堆(排序)了! 】
源码分析
主要属性
// 默认容量为11 private static final int DEFAULT_INITIAL_CAPACITY = 11; // 最大数组大小 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 存储元素的地方 private transient Object[] queue; // 元素个数 private transient int size; // 比较器 private transient Comparator<? super E> comparator; // 重入锁 private final ReentrantLock lock; // 非空条件 private final Condition notEmpty; // 扩容的时候使用的控制变量,CAS更新这个值,谁更新成功了谁扩容,其它线程让出CPU private transient volatile int allocationSpinLock; // 不阻塞的优先级队列,非存储元素的地方,仅用于序列化/反序列化时 private PriorityQueue<E> q; 复制代码
(1)依然是使用一个数组来使用元素;
(2)使用一个锁加一个notEmpty条件来保证并发安全;
(3)使用一个变量的CAS操作来控制扩容;
为啥没有notFull条件呢?
主要构造方法
// 默认容量为11 public PriorityBlockingQueue() { this(DEFAULT_INITIAL_CAPACITY, null); } // 传入初始容量 public PriorityBlockingQueue(int initialCapacity) { this(initialCapacity, null); } // 传入初始容量和比较器 // 初始化各变量 public PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator) { if (initialCapacity < 1) throw new IllegalArgumentException(); this.lock = new ReentrantLock(); this.notEmpty = lock.newCondition(); this.comparator = comparator; this.queue = new Object[initialCapacity]; } 复制代码
入队
每个阻塞队列都有四个方法,我们这里只分析一个offer(E e)方法:
public boolean offer(E e) { // 元素不能为空 if (e == null) throw new NullPointerException(); final ReentrantLock lock = this.lock; // 加锁 lock.lock(); int n, cap; Object[] array; // 判断是否需要扩容,即元素个数达到了数组容量 while ((n = size) >= (cap = (array = queue).length)) tryGrow(array, cap); try { Comparator<? super E> cmp = comparator; // 根据是否有比较器选择不同的方法 if (cmp == null) siftUpComparable(n, e, array); else siftUpUsingComparator(n, e, array, cmp); // 插入元素完毕,元素个数加1 size = n + 1; // 唤醒notEmpty条件 notEmpty.signal(); } finally { // 解锁 lock.unlock(); } return true; } private static <T> void siftUpComparable(int k, T x, Object[] array) { Comparable<? super T> key = (Comparable<? super T>) x; while (k > 0) { // 取父节点 int parent = (k - 1) >>> 1; // 父节点的元素值 Object e = array[parent]; // 如果key大于父节点,堆化结束 if (key.compareTo((T) e) >= 0) break; // 否则,交换二者的位置,继续下一轮比较 array[k] = e; k = parent; } // 找到了应该放的位置,放入元素 array[k] = key; } 复制代码
入队的整个操作跟PriorityQueue几乎一致:
(1)加锁;
(2)判断是否需要扩容;
(3)添加元素并做自下而上的堆化;
(4)元素个数加1并唤醒notEmpty条件,唤醒取元素的线程;
(5)解锁;
扩容
private void tryGrow(Object[] array, int oldCap) { // 先释放锁,因为是从offer()方法的锁内部过来的 // 这里先释放锁,使用allocationSpinLock变量控制扩容的过程 // 防止阻塞的线程过多 lock.unlock(); // must release and then re-acquire main lock Object[] newArray = null; // CAS更新allocationSpinLock变量为1的线程获得扩容资格 if (allocationSpinLock == 0 && UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset, 0, 1)) { try { // 旧容量小于64则翻倍,旧容量大于64则增加一半 int newCap = oldCap + ((oldCap < 64) ? (oldCap + 2) : // grow faster if small (oldCap >> 1)); // 判断新容量是否溢出 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow int minCap = oldCap + 1; if (minCap < 0 || minCap > MAX_ARRAY_SIZE) throw new OutOfMemoryError(); newCap = MAX_ARRAY_SIZE; } // 创建新数组 if (newCap > oldCap && queue == array) newArray = new Object[newCap]; } finally { // 相当于解锁 allocationSpinLock = 0; } } // 只有进入了上面条件的才会满足这个条件 // 意思是让其它线程让出CPU if (newArray == null) // back off if another thread is allocating Thread.yield(); // 再次加锁 lock.lock(); // 判断新数组创建成功并且旧数组没有被替换过 if (newArray != null && queue == array) { // 队列赋值为新数组 queue = newArray; // 并拷贝旧数组元素到新数组中 System.arraycopy(array, 0, newArray, 0, oldCap); } } 复制代码
(1)解锁,解除offer()方法中加的锁;
(2)使用allocationSpinLock变量的CAS操作来控制扩容的过程;
(3)旧容量小于64则翻倍,旧容量大于64则增加一半;
(4)创建新数组;
(5)修改allocationSpinLock为0,相当于解锁;
(6)其它线程在扩容的过程中要让出CPU;
(7)再次加锁;
(8)新数组创建成功,把旧数组元素拷贝过来,并返回到offer()方法中继续添加元素操作;
出队
阻塞队列的出队方法也有四个,我们这里只分析一个take()方法:
public E take() throws InterruptedException { final ReentrantLock lock = this.lock; // 加锁 lock.lockInterruptibly(); E result; try { // 队列没有元素,就阻塞在notEmpty条件上 // 出队成功,就跳出这个循环 while ( (result = dequeue()) == null) notEmpty.await(); } finally { // 解锁 lock.unlock(); } // 返回出队的元素 return result; } private E dequeue() { // 元素个数减1 int n = size - 1; if (n < 0) // 数组元素不足,返回null return null; else { Object[] array = queue; // 弹出堆顶元素 E result = (E) array[0]; // 把堆尾元素拿到堆顶 E x = (E) array[n]; array[n] = null; Comparator<? super E> cmp = comparator; // 并做自上而下的堆化 if (cmp == null) siftDownComparable(0, x, array, n); else siftDownUsingComparator(0, x, array, n, cmp); // 修改size size = n; // 返回出队的元素 return result; } } private static <T> void siftDownComparable(int k, T x, Object[] array, int n) { if (n > 0) { Comparable<? super T> key = (Comparable<? super T>)x; int half = n >>> 1; // loop while a non-leaf // 只需要遍历到叶子节点就够了 while (k < half) { // 左子节点 int child = (k << 1) + 1; // assume left child is least // 左子节点的值 Object c = array[child]; // 右子节点 int right = child + 1; // 取左右子节点中最小的值 if (right < n && ((Comparable<? super T>) c).compareTo((T) array[right]) > 0) c = array[child = right]; // key如果比左右子节点都小,则堆化结束 if (key.compareTo((T) c) <= 0) break; // 否则,交换key与左右子节点中最小的节点的位置 array[k] = c; k = child; } // 找到了放元素的位置,放置元素 array[k] = key; } } 复制代码
出队的过程与PriorityQueue基本类似:
(1)加锁;
(2)判断是否出队成功,未成功就阻塞在notEmpty条件上;
(3)出队时弹出堆顶元素,并把堆尾元素拿到堆顶;
(4)再做自上而下的堆化;
(5)解锁;
总结
(1)PriorityBlockingQueue整个入队出队的过程与PriorityQueue基本是保持一致的;
(2)PriorityBlockingQueue使用一个锁+一个notEmpty条件控制并发安全;
(3)PriorityBlockingQueue扩容时使用一个单独变量的CAS操作来控制只有一个线程进行扩容;
(4)入队使用自下而上的堆化;
(5)出队使用自上而下的堆化;
彩蛋
为什么PriorityBlockingQueue不需要notFull条件?
因为PriorityBlockingQueue在入队的时候如果没有空间了是会自动扩容的,也就不存在队列满了的状态,也就是不需要等待通知队列不满了可以放元素了,所以也就不需要notFull条件了。
欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 【Java集合源码剖析】ArrayList源码剖析
- Java集合源码剖析:TreeMap源码剖析
- 浅谈 Java 集合 | 底层源码解析
- 读 Zepto 源码之集合元素查找
- 读 Zepto 源码之集合元素查找
- Java集合干货——ArrayList源码分析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Algorithms Unlocked
Thomas H. Cormen / The MIT Press / 2013-3-1 / USD 25.00
Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is pro......一起来看看 《Algorithms Unlocked》 这本书的介绍吧!