内容简介:栗子 晓查 编译量子位 出品 | 公众号 QbitAI
栗子 晓查 编译
量子位 出品 | 公众号 QbitAI
同学,现在有一份33条神经网络训练秘笈,摆在你面前。
AI大佬 Andrej Karpathy (简称AK) ,刚刚发布了一篇长长长长博客,苦口婆心地列举了33条技巧和注意事项,全面避免大家踩坑,推特已有 2,300 多赞。
AK在斯坦福读博的时候,是飞飞实验室的成员,毕业去了OpenAI,然后又成了特斯拉的AI负责人,直到如今。
他的博客虽然一年一更,但一字一句皆是皆是多年心血凝结而成,每次更新必有重大回响。
有生之年,我们把内文翻译如下:
训练模型的“处方”
总的来说,Andrej Karpathy的技巧就是:不要心急 ( 文章结尾会道出原因 ) ,从简单到复杂逐步完善你的神经网络。
1、先别着急写代码
训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。
一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。
2、设置端到端的训练评估框架
处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。
在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。获得准确度等衡量模型的标准,用模型进行预测。
这个阶段的技巧有:
· 修复随机种子
使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。
· 简单化
在此阶段不要有任何幻想,不要扩增数据。扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。
· 在评估中添加有效数字
在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。
· 在初始阶段验证损失函数
验证函数是否从正确的损失值开始。例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。
· 初始化
正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。
· 人类基线
监控除人为可解释和可检查的损失之外的指标。尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。
· 设置一个独立于输入的基线
最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。
· 过拟合一个batch
增加了模型的容量并验证我们可以达到的最低损失。
· 验证减少训练损失
尝试稍微增加数据容量。
· 在训练模型前进行数据可视化
将原始张量的数据和标签可视化,可以节省了调试次数,并揭示了数据预处理和数据扩增中的问题。
· 可视化预测动态
在训练过程中对固定测试批次上的模型预测进行可视化。
· 使用反向传播来获得依赖关系:
一个方法是将第i个样本的损失设置为1.0,运行反向传播一直到输入,并确保仅在第i个样本上有非零的梯度。
· 概括一个特例:对正在做的事情编写一个非常具体的函数,让它运行,然后在以后过程中确保能得到相同的结果。
3、过拟合
首先我们得有一个足够大的模型,它可以过拟合,减少训练集上的损失,然后适当地调整它,放弃一些训练集损失,改善在验证集上的损失)。
这一阶段的技巧有:
· 挑选模型
为了获得较好的训练损失,我们需要为数据选择合适的架构。不要总想着一步到位。如果要做图像分类,只需复制粘贴ResNet-50,我们可以在稍后的过程中做一些自定义的事。
· Adam方法是安全的
在设定基线的早期阶段,使用学习率为3e-4的Adam 。根据经验,亚当对超参数更加宽容,包括不良的学习率。
· 一次只复杂化一个
如果多个信号输入分类器,建议逐个输入,然后增加复杂性,确保预期的性能逐步提升,而不要一股脑儿全放进去。比如,尝试先插入较小的图像,然后再将它们放大。
· 不要相信学习率衰减默认值
如果不小心,代码可能会过早地将学习率减少到零,导致模型无法收敛。我们完全禁用学习率衰减避免这种状况的发生。
4、正则化
理想的话,我们现在有一个大模型,在训练集上拟合好了。
现在,该正则化了。舍弃一点训练集上的准确率,可以换取验证集上的准确率。
这里有一些技巧:
· 获取更多数据
至今大家最偏爱的正则化方法,就是添加一些真实训练数据。
不要在一个小数据集花太大功夫,试图搞出大事情来。有精力去多收集点数据,这是唯一一个确保性能单调提升的方法。
· 数据扩增
把数据集做大,除了继续收集数据之外,就是扩增了。旋转,翻转,拉伸,做扩增的时候可以野性一点。
· 有创意的扩增
还有什么办法扩增数据集?比如域随机化 (Domain Randomization) ,模拟 (Simulation) ,巧妙的混合 (Hybrids) ,比如把数据插进场景里去。甚至可以用上GAN。
· 预训练
当然,就算你手握充足的数据,直接用预训练模型也没坏处。
· 跟监督学习死磕
不要对无监督预训练太过兴奋了。至少在视觉领域,无监督到现在也没有非常强大的成果。虽然,NLP领域有了BERT,有了会讲故事的GPT-2,但我们看到的效果很大程度上还是经过了人工挑选。
· 输入低维一点
把那些可能包含虚假信号的特征去掉,因为这些东西很可能造成过拟合,尤其是数据集不大的时候。
同理,如果低层细节不是那么重要的话,就输入小一点的图片,捕捉高层信息就好了。
· 模型小一点
许多情况下,都可以给网络加上领域知识限制 (Domain Knowledge Constraints) ,来把模型变小。
比如,以前很流行在ImageNet的骨架上放全连接层,但现在这种操作已经被平均池化取代了,大大减少了参数。
·减小批尺寸
对批量归一化 (Batch Normalization) 这项操作来说,小批量可能带来更好的正则化效果 (Regularization) 。
· Dropout
给卷积网络用dropout2d。不过使用需谨慎,因为这种操作似乎跟批量归一化不太合得来。
· 权重衰减
增加权重衰减 (Weight Decay) 的惩罚力度。
· 早停法
不用一直一直训练,可以观察验证集的损失,在快要过拟合的时候,及时喊停。
· 也试试大点的模型
注意,这条紧接上条 (且仅接上条) 。
我发现,大模型很容易过拟合,几乎是必然,但早停的话,模型可以表现很好。
最后的最后,如果想要更加确信,自己训练出的网络,是个不错的分类器,就把第一层的权重可视化一下,看看边缘 (Edges) 美不美。
如果第一层的过滤器看起来像噪音,就需要再搞一搞了。同理,激活 (Activations) 有时候也会看出瑕疵来,那样就要研究一下哪里出了问题。
5、调参
读到这里,你的AI应该已经开始探索广阔天地了。这里,有几件事需要注意。
· 随机网格搜索
在同时调整多个超参数的情况下,网格搜索听起来是很诱人,可以把各种设定都包含进来。
但是要记住,随机搜索才是最好的。
直觉上说,这是因为网络通常对其中一些参数比较敏感,对其他参数不那么敏感。
如果参数a是有用的,参数b起不了什么作用,就应该对a取样更彻底一些,不要只在几个固定点上多次取样。
· 超参数优化
世界上,有许多许多靓丽的贝叶斯超参数优化 工具 箱,很多小伙伴也给了这些工具好评。
但我个人的经验是,State-of-the-Art都是用实习生做出来的 (误) 。
6、还能怎么压榨**
当你已经找到了好用的架构和好用的超参数,还是有一些技巧,可以在帮你现有模型上获得更好的结果,榨干最后一丝潜能:
· 模型合体
把几个模型结合在一起,至少可以保证提升2%的准确度,不管是什么任务。
如果,你买不起太多的算力,就用蒸馏 (Distill) 把模型们集合成一个神经网络。
· 放那让它训练吧
通常,人类一看到损失趋于平稳,就停止训练了。
但我感觉,还是训练得昏天黑地,不知道多久了,比较好。
有一次,我意外把一个模型留在那训练了一整个寒假。
我回来的时候,它就成了State-of-the-Art。
One More Thing
无独有偶,前两天有只“阵亡的程序猿”说:
AWS的钱,不是花在你用了多少,而是花在你忘了关电脑。
同学,如果你也曾经有这样的经历,那么恭喜,你也有训练出State-of-the-Art的潜力。
原文链接:
http://karpathy.github.io/2019/04/25/recipe/
— 完 —
订阅AI内参,获取AI行业资讯
加入社群
量子位AI社群开始招募啦,量子位社群分:AI讨论群、AI+行业群、AI技术群;
欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“微信群”,获取入群方式。 (技术群与AI+行业群需经过审核,审核较严,敬请谅解)
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态
喜欢就点「好看」吧 !
以上所述就是小编给大家介绍的《半天2k赞火爆推特!李飞飞高徒发布33条神经网络训练秘技》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 出神入化:特斯拉AI主管、李飞飞高徒Karpathy的33个神经网络「炼丹」技巧
- 李飞飞高徒:斯坦福如何打造基于视觉的智能医院?
- 神经网络 – 序列预测LSTM神经网络落后
- 神经网络历史以及浅析神经网络与感知机
- 【神经网络】11行Python代码实现的神经网络
- 常见的五种神经网络(三):循环神经网络(上篇)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
谷歌和亚马逊如何做产品
梅 (Chris Vander Mey) / 刘亦舟 / 人民邮电出版社 / 2014-6-1 / CNY 49.00
软件在交付之前,面临产品、方案、项目和工程管理等诸多挑战,如何做到游刃有余并打造出极致产品?本书作者曾任谷歌和亚马逊高级产品经理、现任Facebook产品经理,他将自己在达特茅斯学院钻研的理论知识和在领先的互联网公司十年的工作经验尽数总结在此,从定义产品开始,一步步指导你完成管理项目、迭代、发布、市场推广等交付流程,让你身临其境地体验到极致产品如何取得成功。 本书主要内容: 如何清晰定......一起来看看 《谷歌和亚马逊如何做产品》 这本书的介绍吧!