共识问题

栏目: 编程工具 · 发布时间: 5年前

内容简介:共识:一致同意,完整(只决定一次),有效,终止(宕机不回来)。要多数都同意,很慢。paxos完全符合,单raft,zap考虑的是宕机还会回来的情况,用日志保证。能解决诸如以下问题:数据一致性是通过日志复制的方式,client发给leader(写只发给leader,follower备份恢复用),leader写入日志,同步给follower,当多数follower写入日志并返回给leader时,leader提交数据,返回给客户端确认消息, 发给follower数据已提交,follower提交数据,发回确认给le

共识:一致同意,完整(只决定一次),有效,终止(宕机不回来)。要多数都同意,很慢。

paxos完全符合,单raft,zap考虑的是宕机还会回来的情况,用日志保证。能解决诸如以下问题:

全序广播相当于重复多伦共识:但raft和zap等直接实现全序广播内有一次一值的共识。
单领导者选取:1选出一位领导者,2对领导者的提议进行表决(防止1,一个节点相信自己是领导)投票是同步的,动态成员扩展难,依靠超时检测节点失效,若只有一条特定网络不可靠,会进入领导频繁二人转局面

共识算法

raft

数据一致性是通过日志复制的方式,client发给leader(写只发给leader,follower备份恢复用),leader写入日志,同步给follower,当多数follower写入日志并返回给leader时,leader提交数据,返回给客户端确认消息, 发给follower数据已提交,follower提交数据,发回确认给leader。所有的发送都随着调频发过去。raft中所有server之间的通信都是RPC调用,并且只有两种类型的RPC调用:第一种是RequestVote,用于选举leader;第二种是AppendEntries。日志和投票结果都需要持续化写在磁盘中,保证宕机后重启任然正常。

leader(有任期字段term),candidate, follower.每个节点有在T到2T之间随机选择超时时间。leader和follower通过跳频联系。当一个follower收不到leader的跳频超时时将发起投自己的票。任何一个follower只能投一票。当一轮投票结束有多个候选者时,这几个候选者重新分配随机的超时时间。

当确认提交后,leader会一直不断地重试提交的rpc给follower、重试,直到请求成功;即使follower宕机了,重启后leader仍会接着发请求,直到请求成功,当leader宕机,如何向follower继续发;1.leader的日志只能增加,=》所以在选择时选term大,log长的 2.leader会把自己的log复制到其他机器,如果新达到多数并且此任期已有数据过半(挂前的一次数据不会被重复提交)就提交,只提交新任期的,同步还是要同步。

为了恢复log一致性,leader为集群中所有follower都保存一个状态变量,即nextIndex:1)nextIndex是leader准备向某个follower发送的下一个log entry的index;2)当leader刚刚即位后,nextIndex的初始值是(1+leader's last index);

当leader看到请求被拒绝时,其动作非常简单:只需将nextIndex-1,再次尝试。

term需要存盘

任意一个server在一个term内只能投出一票;一旦已经投给了一个candidate,它必须拒绝其他candidate的投票请求;其实server根本不在意把票投给谁,它只会把票投给最先到请求到它的candidate;为了保证这一点,必须把投票信息持久保存到磁盘上,这样可以保证即使该server投完票后宕机,稍后又立即重启了,也不会在同一个term内给第二个candidate投票了。

每个日志entry:iterm+index.每次发送AppendEntries时需要带上一次的,检查是否一样,一样才接受来保证所有机器log一致,

paxos

  • basic paxos
    共识问题
    这里有个错误。第二阶段若N>=ResN,接受提案,若N<ResN不接受。实际上这里的proposal是leader。共识算法正常是proposor,leader,accepter,leaner(先忽略),用来决议proposer的提议号和是否成功的。每次proposal先到leader(可随机选取,不重要),leader发给accepter若没有冲突返回any否则返回已选的,继续上述过程。
    问题:多个Proposal可能出现死锁一直循环递增N的情况:

    共识问题

    上面这个是 https://www.microsoft.com/en-...

    为了方便理解,去除了实现细节。实时上再应用中,客户端不会自己处理冲突+1再次投票和发送给其他leaner,这些应该由另一个角色,在basic中,由一群c协调者,可以和acceptor一样,或者是其中的部分构成,每轮随机一个c作为leader,负责收集本轮结果和通知leaner。proposal->leader(每个client随机发就可以作为本轮leader)->pre->acceptors返回最大N的值V->带N请求->acceptors->leader->返回给proposal->client失败或者成功或再次投票->投票成功后发给leaner。此过程中CLIENT2再次发送是另一个leader。

  • fast paxos
    若proposal和acceptor,leader,leaner都是分布式,且要持久化,持久化+发送来回的代价就多了,
    若leader发现没有冲突,不再参与 ,proposal直接提交给acceptor(同一轮只投给先到的),直接发送给leaner,可以理解为基于乐观锁的思想,leaner和CLIENT都自行决议,
    若proposal没有决策成功(先到的就是投票,没有半数以上的),1.重新引入leader,异步发送给协调者,协调者选择(因为acceptor只投一次),发给proposal结果。(再次引入leader)2.无leader,在acceptor决议后发送给所有acceptor,其他acceptor收到此消息后对i+1轮的可以比较投票(即使同时刻一个一半也可以再比较投一次)。
    https://www.microsoft.com/en-...
  • muti-paxos
    当leader稳定,可以省去prepare阶段
    具体做法如下:

① 当某个副本节点通过选举成为Master后,就会使用新分配的编号N来广播一个Prepare消息,该Prepare消息会被所有未达成一致的Instance和目前还未开始的Instance共用。

② 当Acceptor接收到Prepare消息后,必须对多个Instance同时做出回应,这通常可以通过将反馈信息封装在一个数据包中来实现,假设最多允许K个Instance同时进行提议值的选定,那么:

-当前之多存在K个未达成一致的Instance,将这些未决的Instance各自最后接受的提议值封装进一个数据包,并作为Promise消息返回。

-同时,判断N是否大于当前Acceptor的highestPromisedNum值(当前已经接受的最大的提议编号值),如果大于,那么就标记这些未决Instance和所有未来的Instance的highestPromisedNum的值为N,这样,这些未决Instance和所有未来Instance都不能再接受任何编号小于N的提议。

③ Master对所有未决Instance和所有未来Instance分别执行Propose->Accept阶段的处理,如果Master能够一直稳定运行的话,那么在接下来的算法运行过程中,就不再需要进行Prepare->Promise处理了。但是,一旦Master发现Acceptor返回了一个Reject消息,说明集群中存在另一个Master并且试图使用更大的提议编号发送了Prepare消息,此时,当前Master就需要重新分配新的提议编号并再次进行Prepare->Promise阶段的处理。

可见chubby就是一个典型的Muti-Paxos算法应用,在Master稳定运行的情况下,只需要使用同一个编号来依次执行每一个Instance的Promise->Accept阶段处理。

raft和paxos区别

raft要有一个leader。在 选主时每个follower只能投一次 ,不成功随机时间下一次。有主时的共识由主来给日志编号,比较就好。follower保证稳定可替换即可。

paxos leader不能那么重要(fast paxos在无冲突时甚至无leader参与),每次可以随机选,只是汇总投票,prososol是否通过由多数决定,prososol回复客户端和同步其他leaner。算是无主的模型。

zap还是有leader的。 zap在无主的时候选举算法和fast paxos很像 ,有最大xid(类似pre阶段,只不过是上次存好的),每次投票直接给acceptor并且无协调者的冲突处理。在有主时,用paxos的思想先pre收集并同步信息保证一致,主处理写,多数处理成功后回复。

优势就是单主能不能抗住了。

zookeeper

Zookeeper对于每个节点QuorumPeer的设计相当的灵活,QuorumPeer主要包括四个组件:客户端请求接收器(ServerCnxnFactory)、数据引擎(ZKDatabase)、选举器(Election)、核心功能组件(Leader/Follower/Observer不同)

采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。

本身的数据组织以文件形式。

作用

1.单独zk集群元数据的可靠性和一致性保证,元数据保存在zk所有副本中(少量完全可以放在内存中数据)

路由,选择数据库,调度程序

2.单独zk集群,锁,防护令牌,获取锁或者zxid

3.变更通知,每个变更都会发送到所有节点

watch机制

4.用于检测,服务发现

session:

每个ZooKeeper客户端的配置中都包括集合体中服务器的列表。在启动时,客户端会尝试连接到列表中的一台服务器。如果连接失败,它会尝试连接另一台服务器,以此类推,直到成功与一台服务器建立连接或因为所有ZooKeeper服务器都不可用而失败。

只要一个会话空闲超过一定时间,都可以通过客户端发送ping请求(也称为心跳)保持会话不过期。ping请求由ZooKeeper的客户端库自动发送,因此在我们的代码中不需要考虑如何维护会话。这个时间长度的设置应当足够低,以便能档检测出服务器故障(由读超时体现),并且能够在会话超时的时间段内重新莲接到另外一台服务器。

zookeeper数据同步过程:

  • zab protocol

    Leader election
        leader选举过程,electionEpoch自增,在选举的时候lastProcessedZxid越大,越有可能成为leader
    Discovery:
        第一:leader收集follower的lastProcessedZxid,这个主要用来通过和leader的lastProcessedZxid对比来确认follower需要同步的数据范围
        第二:选举出一个新的peerEpoch,主要用于防止旧的leader来进行提交操作(旧leader向follower发送命令的时候,follower发现zxid所在的peerEpoch比现在的小,则直接拒绝,防止出现不一致性)
    Synchronization:
        follower中的事务日志和leader保持一致的过程,就是依据follower和leader之间的lastProcessedZxid进行,follower多的话则删除掉多余部分,follower少的话则补充,一旦对应不上则follower删除掉对不上的zxid及其之后的部分然后再从leader同步该部分之后的数据
    Broadcast
        正常处理客户端请求的过程。leader针对客户端的事务请求,然后提出一个议案,发给所有的follower,一旦过半的follower回复OK的话,leader就可以将该议案进行提交了,向所有follower发送提交该议案的请求,leader同时返回OK响应给客户端

实际上zookeeper中算法三阶段:FSE=>Recovery=>Broadcast(广播和上面的一致)

  • fast leader election

    基于fast paxos。发送给所有的节点。没有随机leader参与收集。

    共识问题

    LOOKING:进入leader选举状态
    FOLLOWING:leader选举结束,进入follower状态
    LEADING:leader选举结束,进入leader状态
    OBSERVING:处于观察者状态
    1.serverA首先将electionEpoch自增,然后为自己投票
    2 serverB接收到上述通知,然后进行投票PK
    如果serverB收到的通知中的electionEpoch比自己的大,则serverB更新自己的electionEpoch为serverA的electionEpoch
    如果该serverB收到的通知中的electionEpoch比自己的小,则serverB向serverA发送一个通知,将serverB自己的投票以及electionEpoch发送给serverA,serverA收到后就会更新自己的electionEpoch
    在electionEpoch达成一致后,就开始进行投票之间的pk,优先比较proposedEpoch,然后优先比较proposedZxid,最后优先比较proposedLeader
    pk完毕后,如果本机器投票被pk掉,则更新投票信息为对方投票信息,同时重新发送该投票信息给所有的server。如果本机器投票没有被pk掉,如果是looking,过半更改状态,如果FOLLOWING/LEADING说明落后,加速收敛
  • Recovery
    略: https://my.oschina.net/pingpa...

follower读写过程图:

共识问题

ectd


以上所述就是小编给大家介绍的《共识问题》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python核心编程(第3版)

Python核心编程(第3版)

[美] Wesley Chun / 孙波翔、李斌、李晗 / 人民邮电出版社 / 2016-5 / CNY 99.00

《Python核心编程(第3版)》是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、Microsoft Office编程、扩展Python等内容。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的We......一起来看看 《Python核心编程(第3版)》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试