spark Container killed on request. Exit code is 143 解决办法

栏目: 编程工具 · 发布时间: 6年前

内容简介:scala启动多个sparkcontext时,发现启动不起来。查看Applications任务时,发现Memory Total和Memory Used一样了。For more detailed output, check application tracking page:http://bigserver1:8088/cluster/app/application_1555651019351_0001Then, click on links to logs of each attempt.Diagnosti

scala启动多个sparkcontext时,发现启动不起来。查看Applications任务时,发现Memory Total和Memory Used一样了。

一,调整spark,driver和executor的内存

1,log日志错误

For more detailed output, check application tracking page:http://bigserver1:8088/cluster/app/application_1555651019351_0001Then, click on links to logs of each attempt.

Diagnostics: Container [pid=280568,containerID=container_e09_1555651019351_0001_02_000001] is running beyond virtual memory limits. Current usage: 383.9 MB of 1 GB physical memory used; 1.5 GB of 1.1 GB virtual memory used. Killing container.

Killed by external signal

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。省略。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

Container killed on request. Exit code is 143

Container exited with a non-zero exit code 143

Failing this attempt

2,java异常错误

2019-04-24 14:42:31 ERROR TransportRequestHandler:293 - Error sending result RpcResponse{requestId=8586978943123146370, body=NioManagedBuffer{buf=java.nio.HeapByteBuffer[pos=0 lim=13 cap=13]}} to /10.0.40.222:34982; closing connection

io.netty.handler.codec.EncoderException: java.lang.OutOfMemoryError: Java heap space

上面二个错误,都是因为spark分配的内存不足造成的,解决办法有二种

1,spark-submit的时候加上--driver-memory 2g --executor-memory 2g

2,修改spark-defaults.conf,添加以下内容

spark.driver.memory              2g
spark.executor.memory            2g

第二方法,改完后要重启spark集群。

改过后,spark-submit不报错,跑完后,出现以下内容说明配置成功

spark Container killed on request. Exit code is 143 解决办法

spark driver executor 内存调整

二,调整yarn资源

SparkContext.java.lang.IllegalArgumentException: Required executor memory (1024+384 MB) is above the max threshold (1024 MB) of this cluster! Please check the values of 'yarn.scheduler.maximum-allocation-mb' and/or 'yarn.nodemanager.resource.memory-mb'.

解决办法:修改yarn-site.xml

<property>
 <name>yarn.nodemanager.resource.cpu-vcores</name>
 <value>16</value>
</property>
<property>
 <name>yarn.scheduler.minimum-allocation-vcores</name>
 <value>1</value>
</property>
<property>
 <name>yarn.scheduler.maximum-allocation-vcores</name>
 <value>16</value>
</property>

<property>
 <name>yarn.nodemanager.resource.memory-mb</name>
 <value>16384</value>
</property>
<property>
 <name>yarn.scheduler.minimum-allocation-mb</name>
 <value>1024</value>
</property>
<property>
 <name>yarn.scheduler.maximum-allocation-mb</name>
 <value>16384</value>
</property>

改过的文件同步到hadoop集群中的所有机器上面,然后重启hadoop集群,如果Memory Total,增加了,说明成功了。

spark Container killed on request. Exit code is 143 解决办法

yarn 内存调整


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算机体系结构

计算机体系结构

John L. Hennessy、David A. Patterson / 机械工业出版社 / 2012-1 / 138.00元

编辑推荐 “本书之所以成为永恒的经典,是因为它的每一次再版都不仅仅是更新补充,而是一次全面的修订,对这个激动人心且快速变化领域给出了最及时的信息和最独到的解读。对于我来说,即使已有二十多年的从业经历,再次阅读本书仍自觉学无止境,感佩于两位卓越大师的渊博学识和深厚功底。” ——Luiz André Barroso,Google公司 内容简介 本书堪称计算机系统结构学科的“圣经......一起来看看 《计算机体系结构》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具