内容简介:【亿邦动力讯】如果数据成为企业的大脑,如何持久地保持这个大脑的开放性和学习性,将成为考验企业的新问题。行业正在觉醒。当很多企业还在纠结是否数字化、下多大力气数字化时,已经有先行者将看似纸上谈兵的理论落地,开始建造属于自己的数据大脑。一路走来,苏春园和他创办的观远数据既是冷静的旁观者,又是切身的参与者。在谈起“数据”相关话题时,苏春园似乎可随时随地进入状态,他想深入观察和参与零售业的数字化历史进程,也想让数据大脑真正地变成零售企业的标配。行业认知的升级和变革,使得扎根零售数字化和智能化的企业和平台一波又一波涌
【亿邦动力讯】如果数据成为企业的大脑,如何持久地保持这个大脑的开放性和学习性,将成为考验企业的新问题。行业正在觉醒。当很多企业还在纠结是否数字化、下多大力气数字化时,已经有先行者将看似纸上谈兵的理论落地,开始建造属于自己的数据大脑。
一路走来,苏春园和他创办的观远数据既是冷静的旁观者,又是切身的参与者。在谈起“数据”相关话题时,苏春园似乎可随时随地进入状态,他想深入观察和参与零售业的数字化历史进程,也想让数据大脑真正地变成零售企业的标配。
行业认知的升级和变革,使得扎根零售数字化和智能化的企业和平台一波又一波涌出,看似炫酷又高大上的“黑科技”不断地给行业注入强心针,但是在这场漫长的零售业升级进程中,数据究竟将扮演何种角色?行业是否真的迎来了得数据者得天下的时代?
(观远数据创始人兼CEO苏春园)
精耕细作是前提
此前,亿邦动力曾独家对话观远数据创始人兼CEO苏春园,详细了解其提出的5A战略。点击此处了解5A战略
观远数据将自己定位于智能数据分析平台,5A战略是其数据分析与商业智能解决方案的具体落地途径,即AI+BI(Business Intelligence)。根据介绍,5A战略可拆分为5个部分进行理解:
1、Agile-敏捷化,从核心场景切入,构建基础数据分析体系。
2、Accurate-场景化,梳理监控指标,对商品、营运、市场营销、进销存等数据监控和运营。
3、Automated-自动化,对全链路进行自动处理与监控,分析业务变化。
4、Augmented-增强化,用算法帮助企业进行复杂场景的人工智能应用。
5、Actionable-行动化,分析异常产生的原因,提供可行动的建议。
而这五个阶段好比建楼和打地基的过程,“心急吃不了热豆腐”,必须循序渐进。企业要从积累数据开始,再到分析数据,最后将所有数据“为我所用”。其实,数据好比一座半掩埋的金矿,只能看不能用的数据并不能发挥真正的价值,而观远想帮助行业真正地挖掘出这座金矿的价值。
“目前核心抓手就是数据,大家应该先来挖掘数据金山,把现有的数据有价值地利用起来,再开始重点考虑创新。”苏春园表示。
苏春园向亿邦动力反复强调了精细化运营的重要性,这可能会成为零售业数字化的分水岭之一。“过去几年中,所谓的数字化大多停留在粗放地管理经营。从今年开始,零售企业一定要进入精耕细作的阶段,开始精细管理。通过数据去监管到单店、单品、单客、单SKU和单时,这是真正要做的事情,其他都是概念,企业一定要把精细化管理作为重中之重。”
能一蹴而就的变革并不能称之为变革,零售业数字化同样适用于这个道理。零售漫长的发展史,也使得数字化阶段不可能做到一次到位,这将经历一个过程,对于不同行业不同企业来说,速度或快或慢,但都是必经之路。
苏春园判断,随着企业内部业务的不断调整,管理体系和数据分析体系也需要不断变化。按照目前的经验和情况来判断,对于企业内部的单一业务来说,经过3~6个月可以初步形成一个精细化管理的体系。
务实+创新是过程
在交谈过程中,苏春园向亿邦动力谈及了几个问题,而这些问题也是不少零售企业正在面对并亟待解决的。
例如: 在每一次大促结束后,该如何自动进行效果分析与评估? 如何从海量SKU中快速定位和匹配到本季度门店内最热销的关联商品搭配? 在下午三点,门店某主力SKU商品销售不及预期时,如何在第一时间预警?数据要如何追踪,并给出切实可行的正确建议? 新品推出后,如何做到快速反应,将实时数据和历史规律相结合,判断新品销售情况并响应市场节奏?
企业该如何基于历史经营数据和公共数据,预测不同品类甚至SKU的销售情况?又要如何进一步指导订货、促销、生产和物流?
和立即应用起各种“黑科技”、AI技术比起来,先务实地解决这些摆在眼前的问题,是苏春园和观远对行业提出的建议。
“在过去的两年中,我们发现很多传统零售企业的数据基础差、底子薄,可能没法直接使用一些数据分析的工具,观远会先帮助其做数据梳理,夯实数据基础,基础不好真的会拉后腿。除了底子薄的问题比较棘手外,很多企业的负责人被AI‘洗脑’,希望直接运用AI技术,全面AI化,就好比地基还没打好,就想直接盖到五层楼。”苏春园向亿邦动力表示。
经过AI风口的洗礼,和有关数字化的激烈讨论,行业正在逐渐回归到理性阶段。“如果说企业有两只手,那一只手已经开始理性地打基础,监控数据细节。但另一方面,大家对科技的热度还在,在务实的同时,另外一只手也会去尝试更多可能和创新。”苏春园认为,这种状态非常好,“该务实的地方要务实,该尝试新的东西也要去尝试。”
和一些传统零售企业相比,部分发迹于互联网和注重数据的零售公司在基本功上更具先发优势。相比较之下,数据积累充分、技术好、预算多的企业,已经可以从精细化运营进入到更高阶段的尝试——单场景的智能化落地,例如在某个场景下做到智能预警,预测发现问题,并进行自动诊断。
数据决策是结果
在苏春园看来,找到可以智能化的第一个场景很重要,有第一个应用场景后才能进一步“开枝散叶”。“数据分析和应用相对成熟的企业,可以挑选一两个场景优先落地进行尝试,随着数据不断完善,再探讨可复制性,做更多的落地尝试。例如先做销量预测预警、再到客户流失的预警以及智能订货等。”
和传统BI不同,观远数据希望根据不同企业的数据基础,帮助其进行整体的数字化发展规划。这家企业笃定,未来企业的核心竞争力势必在于数据驱动和智能决策。在这个充满未知的时代,all in在建造数据决策大脑这件事上是最佳策略。
在新零售、智慧零售和无界零售等各种新名词的加码下,概念辨析和争论已经变得意义微弱,但不可否认的是,在互联网巨头的吹风和推动下,线上线下进一步融合,“人货场”三要素间的多维互动更为频繁和复杂。在这种背景下,让数据代替人的经验的说话显得更为重要和紧迫。
苏春园认为,数字化和智能化是递进关系,前者是基础,后者则是深度应用。观远一些客户企业中,已经可以把单个场景进行智能化运营,例如对销售进行智能预测,从靠经验决策改为用算法决策。以前需要等老板拍板决策的问题或者反馈问题较慢的刘亮程,现在都可以托管给算法。
“算法要结合人的经验共同发挥作用。算法不知疲倦地运转和发现问题,而人是要验证规律,然后告诉算法,基于这个规律去不断地发现问题。但现在一般只能做到某个场景的智能化运营,我们离全面智能还需要一段时间,大概可能在3至5年。而且我们要不断提高智能化的精准程度,从70%、80%、90%到99%……智能化是没有止境的。”苏春园向亿邦动力指出。
从2016年9月成立至今,观远数据已经服务于联合利华、百威英博、冈本、生鲜传奇、NOME诺米家居、喜茶、Lily、IFS、上蔬永辉、小红书等多家零售企业。结合两年多的垂直行业经验和对未来趋势的预判,在面对新的竞争对手、新的渠道和新的环境时,苏春园总结了三点建议:
第一,极度的精细化管理,到单品、单SKU、单客。
第二,快速反应,实时响应外部或者内部各种经营环节异常。
第三,智能决策,一层层纵深,针对企业所处的不同阶段,从数据分析到更智能的决策。
数字化改革如火如荼,服务商战场群雄逐鹿,在零售业这场深刻的变革中,观远数据试图把看似冰冷数据描绘得更加性感。无论其构想的这幅蓝图能否如期实现,能参与和见证一个时代的迭代都已经足够幸福。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 让数据会说话 观远如何拿下多家500强客户?
- 滥用网络爬虫技术,多家公司被查
- 逃离Facebook:Mozilla等多家公司停止投放广告
- iOS秋招面经---我是如何通过多家公司的面试
- 万字长文拿下HTTPS,面试不再慌!
- 一个网站拿下机器学习优质资源!搜索效率提高 50%
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
编程的修炼(中英双语)
[荷]Edsger W. Dijkstra / 裘宗燕 / 电子工业出版社 / 2013-7 / 79.00元
本书是图灵奖获得者Edsger W. Dijkstra在编程领域里的经典著作中的经典。作者基于其敏锐的洞察力和长期的实际编程经验,对基本顺序程序的描述和开发中的许多关键问题做了独到的总结和开发。书中讨论了顺序程序的本质特征、程序描述和对程序行为(正确性)的推理,并通过一系列从简单到复杂的程序的思考和开发范例,阐释了基于严格的逻辑推理开发正确可靠程序的过程。 本书写于20世纪70年代中后期,但......一起来看看 《编程的修炼(中英双语)》 这本书的介绍吧!