内容简介:给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:struct Node {int val;
题目
给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
示例:
输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1} 输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1} 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
题解
方法一: 层序遍历
使用层序遍历,遍历的时候把同层的节点连接起来;
class Solution { public Node connect(Node root) { if (root == null) return null; Queue<Node> queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { int size = queue.size(); Node current = null; while (size > 0) { Node node = queue.poll(); if (node.right != null) queue.add(node.right); if (node.left != null) queue.add(node.left); node.next = current; current = node; size--; } } return root; } }
方法二:递归
递归的时候我们通常就分解为递归子问题和递归结束条件。
递归子问题
- 左右子树分别连起来
递归结束条件
- node == null, 直接返回
- node.left != null, 把left.next连到node.right
- node.right != null && node.next != null, 把node的right 连到 node.next的left。例如遍历到2这个节点,把5连接到6.
class Solution { public Node connect(Node root) { // o(1) space. if (root == null) return null; if (root.left != null) root.left.next = root.right; if (root.right != null && root.next != null) root.right.next = root.next.left; connect(root.left); connect(root.right); return root; } }
方法三: 层序遍历 o(1)空间复杂度
层序遍历我们之前用队列来做,但是有时候我们会要求层序遍历用常数的空间复杂度来解。这种方法最关键的地方在于理解 如何从上一层切换到下一层的 。dummy的作用用于记录上一层的第一个节点是谁,每当遍历完一层之后,切到下一层.
class Solution { public Node connect(Node root) { Node dummy = new Node(0); Node pre = dummy; Node currentRoot = root; while (currentRoot != null) { if (currentRoot.left != null) { pre.next = currentRoot.left; pre = pre.next; } if (currentRoot.right != null) { pre.next = currentRoot.right; pre = pre.next; } currentRoot = currentRoot.next; if (currentRoot == null) { // 切换层. pre = dummy; currentRoot = dummy.next; dummy.next = null; } } return root; } }
热门阅读
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- AES 算法(三):填充模式
- mybatis自动填充时间字段
- laravel 使用 Faker 数据填充
- Faker 虚拟数据填充和源码解析
- 如何去除讨厌的Chrome自动填充黄色背景
- [ Laravel 5.7 文档 ] 数据库操作 —— 数据填充
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Hello World
Hannah Fry / W. W. Norton Company / 2018-9 / GBP 17.99
A look inside the algorithms that are shaping our lives and the dilemmas they bring with them. If you were accused of a crime, who would you rather decide your sentence—a mathematically consistent ......一起来看看 《Hello World》 这本书的介绍吧!