内容简介:京东618:容器技法日趋娴熟,数个项目即将开源回馈社区
容器技术火遍技术界,很多公司包括传统行业企业都已经从观望者转变为采用者。作为最早期采用容器技术的一批先锋者,京东从2015年的9千多实例扩大到如今容器作为业务上线默认选项,支撑全部业务运行以及中间件、数据库等。此外,在经历了从OpenStack到Kubernetes的迁移转变之后,京东容器引擎平台已经了从1.0迭代到2.0版本,并且于今年陆续开源数个项目。
罗马不是一天建成的。积累如此久并且支撑过618大促的京东容器技术是怎样的?有哪些革新又有哪些值得业界学习呢?已经开源的项目是怎样的呢?
ArchSummit全球架构师峰会深圳站将于2017年7月7日~8日在深圳·华侨城洲际酒店召开,大会设置了相关专题来深入解读电商大促背后的技术故事,大会还邀请了eBay、WalmartLabs等国外顶尖技术专家,分享AI促销、搜索引擎、异地多活、库存物流等核心架构实践。
容器技术整体概况
今年随着京东业务的飞速发展,京东容器数量上也对应迅速增加。不仅在去年完成京东业务全面运行在JDOS容器之上,并且在数据库,中间件等系统也全面容器化。同时,在这一年,京东上线了 JDOS 2.0 系统,开始了从OpenStack向 Kubernetes 的迁移。截止到 6 月 7 日,已经有 60%的业务运行在了 JDOS 2.0 平台中。
此外不得不提及发生的主要变化: 业务系统全面基于容器镜像全量上线发布;全面使用集群编排;在生产环境尝试和运行抢占式调度,并自研单层单体全局调度器SchedulerX;让业务系统与硬件解耦与资源完全解耦,海量资源,从容大促。
自研单层单体全局调度器
正如上文所述,京东在生产环境尝试和运行抢占式调度,并自研单层单体全局调度器SchedulerX。
SchedulerX属于JDOS弹性计算项目,主要目的是从更高的层面来加强计算资源调度,以提供服务更强的弹性计算能力,提升数据中心资源利用率。
(点击放大图像)
JDOS2.0主要通过以下三个维度对业务进行优先级分类归集,并实施抢占式调度。
1)从业务负载层面来对业务分类,根据业务是长时间运行的任务(long time running)还是离线计算任务(offline),采用不同的资源占用优先级和调度模式
2)从业务高峰时间段会对各个业务进行归类,例如区分是否白天高峰期还是夜间高峰期,将任务进行混合调度,实现资源的错峰利用。
3)从资源区域层面对业务分类,例如GPU资源、CPU资源、SSD资源等。根据业务对于资源的实际需求进行调度。
在保证各个业务80%的资源的情况下,20%的资源在不同时间段可以互相抢占借用。(此比例可以根据实际运营进行调配。例如618、双11大促时,则不允许业务相互抢占,保证资源足够)
在当前没有空闲资源的情况下,JDOS会根据每个机器上运行的业务的分类对机器打分,如果该机器的分数较低,那么抢占就会发生,低优先级的业务首先会被驱逐(Eviction)抢占。
被抢占的作业重新回到PENDING队列里等待重新调度。
SchedulerX确保关键业务不会由于资源不足而停止运行,也会重新调度其他业务使其获得更好的安置。
重大决策:OpenStack No, Kubernetes Yes!
应用容器化遇到的瓶颈
JDOS 1.0 解决了应用容器化的问题,但是依然存在很多不足。
首先是编译打包、自动部署等 工具 脱胎于物理机时代,与容器的开箱即用理念格格不入。容器启动之后仍然需要配套工具系统为其分发配置、部署应用等等。应用启动的速度受到了制约。
其次线上线下环境仍然存在不一致的情况,应用运行的操作环境,依赖的软件栈在线下自测时仍然需要进行单独搭建。线上线下环境不一致也造成了一些线上问题难于在线下复现。更无法达到镜像的“一次构建,随处运行”的理想状态。
再次,JDOS 1.0 时代的容器体量太重,应用需要依赖工具系统进行部署,导致业务的迁移仍然需要工具系统人工运维去实现,难以在通用的平台层实现灵活的扩容缩容与高可用。
另外,容器的调度方式较为单一,只能简单根据物理机剩余资源是否满足要求来进行筛选调度。在提升应用的性能和平台的使用率方面存在天花板。
OpenStack PK Kubernetes
Kubernetes 方案与 OpenStack 方案相比,架构更为简洁。OpenStack 整体运营成本较高,因为牵涉多个项目,每个项目各自有多个不同的组件,组件之间通过 RPC(一般使用 MQ)进行通讯。为提高可用性和性能,还需要考虑各个组件的扩展和备份等。这些都加剧了整体方案的复杂性。问题的排查和定位难度也相应提升,对于运维人员的要求也相应提高。
与之相比,Kubernetes 的组件较少,功能清晰。其核心理念(对于资源,任务的理解),灵活的设计(标签)和声明式的 API 是对 Google 多年来 borg 系统的最好总结。而其提供的丰富的功能,使得京东可以投入更多精力在平台的整个生态上,比如网络性能的提升、容器的精准调度上,而不是容器管理平台本身。尤其是,副本控制的功能受到了业务线上应用运维工程师的追捧,应用的扩容缩容和高可用实现了秒级完成。
改造之路
有了 1.0 的大规模稳定运营作为基础,业务对于使用容器已经给予了相当的信任和支持。但是平台化的容器和基础设施化的容器对于应用的要求也不尽相同。比如,平台化的应用容器IP 并不是固定的,因为当一个容器失效,平台会自动启动另一个容器来替代。新的容器 IP 可能与原 IP 不同。这就要求服务发现不能再以容器 IP 作为主要标识,而是需要采用域名,负载均衡或者服务自注册等方式。因此,在 JDOS 2.0 推广过程中,京东也推动了业务的微服务化,服务框架的升级改造等。
在近两年随着大数据、人工智能等研发规模的扩大,消耗的计算资源也随之增大。因此,京东将大数据、深度学习等离线计算服务也迁移进入 JDOS 2.0。目前是主要采用单独划分区域的方式,各自的服务仍然使用相对独立的计算资源,但是已经纳入 JDOS 2.0 平台进行统一管理。未来,京东将在此基础上,通过调度将离线计算服务在集群资源充足(如夜晚)时给予计算资源扩充,提高计算的效率。
研发成果,两大开源项目
1 分布式高性能DNS项目
JDOS 是如何支持业务的弹性伸缩的?
对于业务的扩展,直接通过调整副本数,横向扩充容器的实例个数。业务如果是 L4/L7 类型的, 使用一个负载均衡来进行流量的分导。 负载均衡项目 ContainerLB是京东自研的一套基于 DPDK 实现的高性能 L4 负载均衡服务,主要负责 JDOS2.0 的 service中 LoadBalancer 的实现。
而 与 ContainerLB 项目非常密切的还有分布式高性能 DNS 项目ContainerDNS。 ( https://github.com/ipdcode/skydns) 为容器提供了内部的 DNS 解析服务。业务如果是微服务类型京东叫 JSF,即需要在 JSF 上进行服务注册与发现的类型,京东则是在容器扩充后,通过服务中间层监听到容器已经启动成功,则对应 Notify JSF。
ContainerDNS,作为京东商城软件定义数据中心的关键基础服务之一,具有以下特点:
- 高可用
- 支持自动发现服务域名
- 支持后端IP+Port,以及URL探活
- 易于维护和横向动态扩展
(点击放大图像)
ContainerDNS 包括四大组件 DNS server、service to DNS 、user API 、IP status check。这四个组件通过etcd 数据库集群结合在一起,彼此独立,降低了耦合性,每个模块可以单独部署。DNS server 用于提供DNS 查询服务的主体,目前支持了大部分常用的查询类型(A、AAAA、SRV、NS、TXT、MX、CNAME等)。service to DNS 组件是k8s 集群与DNS server的中间环节,会实时监控k8s集群的服务的创建,将服务转化为域名信息,存入etcd 数据库中。
user API 组件提供restful api,用户可以创建自己的域名信息,数据同样保持到etcd数据库中。IP status check 模块用于对系统中域名所对应的ip做探活处理,数据状态也会存入到etcd数据库中。如果某一个域名对应的某一个ip地址不能对外提供服务,DNS server 会在查询这个域名的时候,将这个不能提供服务的ip地址自动过滤掉。(关于ContainerDNS的更多内容详见本系列的另外一篇文章《京东商城分布式智能容器DNS实践》)。
2分布式共享存储 ContainerFS 项目
JDOS 是如何支持有状态服务和无状态服务的?
无状态业务的支持相对容易一些,可以直接通过调度自动调整副本数来实现服务的弹性伸
缩。对于有状态的业务,原生的Kubernetes有 StatefulSet 进行支持,但是 StatefulSet 需要容器一个个启动, 另外社区在这个方面开发进度缓慢。 因此京东选择了自己定制 Kubernetes 进行支持,主要是为本集(RC/RS/deployment)提供了 IP 保持不变和存储自动迁移的功能来进行支持。
通过对于每个副本集维护一个小的 IP 池。当副本数调整时,也对应增加或者减少 IP 池中的IP 的数量。副本集中的容器创建时,则使用这个 IP 池中的 IP 进行创建;容器删除时,则将IP 返回到副本集的 IP 池中。
存储也是类似, 对于一个副本集有一个对应的持久化存储(persistent volume)的集合。当副本集中的容器创建时,则使用这个 PV 集合中的一个 PV 进行绑定核存储挂载。容器删除时,则对应进行卸载和解除绑定。
针对于容器的存储, 京东没有选用社区已有的 glusterfs 等方案。而是自研一套分布式共享存储 ContainerFS 的项目来专门提供容器的存储。
Container File System (简称ContainerFS)是为JDOS2.0 系统针对性开发的一个分布式文件系统,同时适用于原生Kubernetes集群以及其他应用场景。
ContainerFS的核心概念是:
a volume = a metadata table + multiple block groups
ContainerFS的架构图如下:
(点击放大图像)
ContainerFS的产品特性:
- 无缝集成 :支持标准的文件访问协议,支持fuse挂载,业务应用无需任何修改即可无缝使用
- 共享访问 :共享访问帮助多个业务应用获得相同的数据来源
- 弹性伸缩 :可满足业务增长对文件存储的容量诉求
- 线性扩展的性能 :线性扩展的存储性能,非常适合数据吞吐型的应用
ContainerFS典型应用:
做为JDOS2.0 的数据存储引擎,ContainerFS提供了独享、共享等类型的volume,并通过PV机制挂载给POD或者容器使用。
(点击放大图像)
使用效果:
(点击放大图像)
目前ContainerDNS, ContainerFS已经开源,ContainerLB会近期在GitHub上开源。
写在最后
为什么要将京东底层技术开源呢?主要两个方面原因:
在底层技术方面,开源是大势所趋。 Google的borg系统在过去十余年间一直处于保密状态,但是现在不但公开了,而且利用起核心思想,孵化出了Kubernetes项目。而Kubernetes项目一经发布,也立即受到了热捧。同时,社区的完善也为Kubernetes和Google的borg提供了更为有益的建议和帮助。当然,不仅仅是Google,CoreOS、OpenStack、 Docker 等等公司和项目的开源大热也说明了这一趋势。
在容器平台实践路上,京东是走的比较早也是比较坚定的。在实践过程中有很多理解和技术视野。 比如我们认为容器技术本质是linux kernel技术,容器技术需要数据中心底层基础软件全力配合,如分布式域名解析,高性能负载均衡,分布式共享存储,精确授时等等。
因此京东在这方面不希望闭门造车,而是能够更多的同业界来分享我们的经验。一方面,为许多底层技术还在摸索中的业内同仁提供一点借鉴和帮助,另一方面,也是希望获取业界的指导,提升京东的基础平台系统和技术思路。
作者简介
鲍永成 ,京东商城 基础平台部技术总监。2013年加入京东,负责京东容器集群平台(JDOS)研发,带领团队完成京东容器大规模落地战略项目,有效承载京东全部业务系统和80%数据库,特别在大促期间 scale up 秒级弹性应对高峰流量。目前聚焦在京东容器集群 JDOS 2.0 以及京东敏捷智能数据中心研发。服务过土豆网(TUDOU.COM),思科(CRDC)等,在分布式、虚拟化、容器、数据中心建设有丰富的实践经验。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Nginx 之大并发服务器架构实战技法三
- Python实用技法第33篇:字符串连接及合并
- Python实用技法第30篇:从字符串中去掉不需要的字符
- 周年回馈——劲爆折扣疯狂价(手慢无)
- 研究发现回馈开源软件能带来竞争优势
- 回馈社区,九州云深耕OpenStack三大试点项目
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。