Druid集群安装使用

栏目: 数据库 · 发布时间: 5年前

内容简介:Druid有开源版本,也有商业版本。商业版本是Druid的主要创始人出来做的公司,旨在推动Druid社区的快速发展,目前来看Druid的社区非常活跃。本文采用Druid的商业发行版本进行安装,即采用imply发布的包进行安装。

Druid有开源版本,也有商业版本。

商业版本是Druid的主要创始人出来做的公司,旨在推动Druid社区的快速发展,目前来看Druid的社区非常活跃。

本文采用Druid的商业发行版本进行安装,即采用imply发布的包进行安装。

为了减少文章篇幅,我们假设您有三台物理机(虚拟机),且完成了以下准备工作:

  • 安装CentOS7操作系统,配置网络、各节点间免密登录、各节点防火墙关闭
  • 各节点JDK8安装、各节点zookeeper安装等。
  • mysql安装

2、集群规划

由于Druid采用分布式设计,其中不同类的的节点各司其职,故在实际部署中首选需要对各类节点进行统一规划,从功能上可以分为3个部分。

  • Master:管理节点,包含协调节点(coordinator)和统治节点(overlord),负责管理数据写入任务和容错相关处理。
  • Data:数据节点,包含历史节点和中间管理者,负责数历史数据的加载和查询和据写入处理。
  • Query:查询节点,包含查询节点和Pivot Web界面,负责提供数据查询接口和WEB交互式查询。

具体的规划如下:

服务器名称 服务器IP 安装服务 本案配置
node01 192.168.196.128 overlord、coordinator、 Mysql RAM 6GB
node02 192.168.196.129 middlemanager、historical RAM 6GB
node03 192.168.196.130 broker、router、pivot RAM 6GB

3、配置概述

Druid集群服务众多,一套完整的Druid集群需要修改很多配置文件。我们对常用配置文件进行了整理。

配置描述 文件路径 (Root Dir为 {IMPLY_HOME}) 修改事项
公共配置 conf/druid/_common/common.runtime.properties 1.需要添加一些扩展信息Extensions
2.需要配置Zookeeper集群信息
3.需要修改Metadata storage,建议选用mysql
4.需要修改Deep storage,建议选用HDFS
coordinator conf/druid/coordinator/runtime.properties 添加host(可选)
overlord conf/druid/overlord/runtime.properties 添加host(可选)
historical conf/druid/historical/runtime.properties 添加hosts(可选)
middleManager conf/druid/middleManager/runtime.properties 添加host(可选)
broker conf/druid/broker/runtime.properties 添加host(可选)
router conf/druid/router/runtime.properties 添加host(可选)
pivot conf/pivot/config.yaml 启动 mysql 存储元数据,记得mysql需要开启远程连接

正常情况下,如果我们采用的是真实的服务器,修改以上配置文件即可启动集群。不过如果使用虚拟机,需要修改下每个服务启动的JVM内存参数。主要是由大改小,改成1g即可,默认配置小于1gb的就可以不用修改。

-Xms1g
-Xmx1g
-XX:MaxDirectMemorySize=1g
复制代码

涉及到的文件列表:

  • conf/druid/overlord/jvm.config
  • conf/druid/coordinator/jvm.config
  • conf/druid/historical/jvm.config
  • conf/druid/middleManager/jvm.config
  • conf/druid/broker/jvm.config
  • conf/druid/router/jvm.config

在druid中,为了提高查询效率,Broker会缓存大量的数据到内存中,可以好不夸张的说Broker内存越大,实时查询的效率越高。对于虚拟机部署的同学来讲,除了以上jvm的配置,还需要修改broker的一些缓存配置。详见配置文件。

4、配置文件

4.1 common.runtime.properties

#
# Extensions
#

druid.extensions.directory=dist/druid/extensions
druid.extensions.hadoopDependenciesDir=dist/druid/hadoop-dependencies
druid.extensions.loadList=["druid-lookups-cached-global","druid-histogram","druid-datasketches","mysql-metadata-storage","druid-hdfs-storage","druid-kafka-indexing-service"]

#
# Logging
# Log all runtime properties on startup. Disable to avoid logging properties on startup:
druid.startup.logging.logProperties=true

#
# Zookeeper
#

druid.zk.service.host=node01:2181,node02:2181,node03:2181
druid.zk.paths.base=/druid

#
# Metadata storage
# For MySQL:
druid.metadata.storage.type=mysql
druid.metadata.storage.connector.connectURI=jdbc:mysql://node01:3306/druid
druid.metadata.storage.connector.user=root
druid.metadata.storage.connector.password=root


#
# Deep storage
# For HDFS:
druid.storage.type=hdfs
druid.storage.storageDirectory=hdfs://node01:9000/druid/segments


#
# Indexing service logs
# For HDFS:
druid.indexer.logs.type=hdfs
druid.indexer.logs.directory=/druid/indexing-logs


#
# Service discovery
#

druid.selectors.indexing.serviceName=druid/overlord
druid.selectors.coordinator.serviceName=druid/coordinator

#
# Monitoring
#

druid.monitoring.monitors=["org.apache.druid.java.util.metrics.JvmMonitor"]
druid.emitter=logging
druid.emitter.logging.logLevel=debug

复制代码

4.2 coordinator/runtime.properties

druid.service=druid/coordinator
druid.host=node01
druid.port=8081

druid.coordinator.startDelay=PT30S
druid.coordinator.period=PT30S

复制代码

4.3 overlord/runtime.properties

druid.service=druid/overlord
druid.host=node01
druid.port=8090

druid.indexer.queue.startDelay=PT30S

druid.indexer.runner.type=remote
druid.indexer.storage.type=metadata
复制代码

4.4 historical/runtime.properties

druid.service=druid/historical
druid.host=node02
druid.port=8083

# HTTP server threads
druid.server.http.numThreads=40

# Processing threads and buffers
druid.processing.buffer.sizeBytes=536870912
druid.processing.numMergeBuffers=2
druid.processing.numThreads=7
druid.processing.tmpDir=var/druid/processing

# Segment storage
druid.segmentCache.locations=[{"path":"var/druid/segment-cache","maxSize"\:130000000000}]
druid.server.maxSize=130000000000

# Query cache
druid.historical.cache.useCache=true
druid.historical.cache.populateCache=true
druid.cache.type=caffeine
druid.cache.sizeInBytes=2000000000

复制代码

4.5 middleManager/runtime.properties

druid.service=druid/middlemanager
druid.host=node02
druid.port=8091

# Number of tasks per middleManager
druid.worker.capacity=3

# Task launch parameters
druid.indexer.runner.javaOpts=-server -Xmx2g -Duser.timezone=UTC -Dfile.encoding=UTF-8 -XX:+ExitOnOutOfMemoryError -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
druid.indexer.task.baseTaskDir=var/druid/task
druid.indexer.task.restoreTasksOnRestart=true

# HTTP server threads
druid.server.http.numThreads=40

# Processing threads and buffers
druid.processing.buffer.sizeBytes=100000000
druid.processing.numMergeBuffers=2
druid.processing.numThreads=2
druid.processing.tmpDir=var/druid/processing

# Hadoop indexing
druid.indexer.task.hadoopWorkingPath=var/druid/hadoop-tmp
druid.indexer.task.defaultHadoopCoordinates=["org.apache.hadoop:hadoop-client:2.8.3", "org.apache.hadoop:hadoop-aws:2.8.3"]

复制代码

4.6 broker/runtime.properties

druid.service=druid/broker
druid.host=node03
druid.port=8082

# HTTP server settings
druid.server.http.numThreads=60

# HTTP client settings
druid.broker.http.numConnections=10
druid.broker.http.maxQueuedBytes=50000000

# Processing threads and buffers
druid.processing.buffer.sizeBytes=1048576
druid.processing.numMergeBuffers=2
druid.processing.numThreads=1
druid.processing.tmpDir=var/druid/processing

# Query cache disabled -- push down caching and merging instead
druid.broker.cache.useCache=false
druid.broker.cache.populateCache=false

# SQL
druid.sql.enable=true

复制代码

4.7 router/runtime.properties

druid.service=druid/router
druid.host=node03
druid.port=8888

druid.processing.numThreads=1
druid.processing.buffer.sizeBytes=1000000

druid.router.defaultBrokerServiceName=druid/broker
druid.router.coordinatorServiceName=druid/coordinator
druid.router.http.numConnections=50
druid.router.http.readTimeout=PT5M
druid.router.http.numMaxThreads=100

druid.server.http.numThreads=100

druid.router.managementProxy.enabled=true

复制代码

4.8 conf/pivot/config.yaml

# The port on which the imply-ui server will listen on.
port: 9095

# runtime directory
varDir: var/pivot


initialSettings:
  connections:
    - name: druid
      type: druid
      title: My Druid
      host: node03:8888
      coordinatorHosts: ["node01"]
      overlordHosts: ["node01"]


settingsLocation:
  location: mysql
  # 这里mysql server 需要开通远程连接权限
  uri: 'mysql://root:root@node01:3306/druid'
  table: 'pivot_state'


复制代码

5、集群启动

集群启动需要先启动zookeeper、hadoop hdfs。

5.1 启动命令

  • 在node01上启动coordinator和overlord

    /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/master-no-zk.conf -daemon
    
    复制代码
  • 在node02上启动middlermanager和historical

    /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/data.conf -daemon
    
    复制代码
  • 在node03上启动broker、router和pivot

    /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/query.conf -daemon
    
    复制代码

注意:初次启动,需要前台启动,没启动成功的任务会反复重试启动。

没有启动成功,可以去看日志。

5.2 一键启动

环境变量

export DRUID_HOME=/export/servers/imply-2.8.19
export PATH=${DRUID_HOME}/bin:$PATH

# source生效

复制代码

启动脚本

# 路径 /export/servers/imply-2.8.19/bin/start-druid.sh 
# 赋权 chmod +x start-druid.sh
# content

nohup ssh node01 "source /etc/profile; /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/master-no-zk.conf -daemon" &
nohup ssh node02 "source /etc/profile; /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/data.conf -daemon" &
nohup ssh node03 "source /etc/profile; /export/servers/imply-2.8.19/bin/supervise -c /export/servers/imply-2.8.19/conf/supervise/query.conf -daemon" &

复制代码

5.3 集群端口

启动成功之后,可以访问以下三个界面。

5.4 管理界面

管理界面分别如下:

省略

6、Kafka集成测试

集群启动之后,需要导入数据进行测试,官网提供了测试操作步骤。地址

主要步骤如下:

  • 创建topic
  • 创建 DataSource schema
  • 提交 DataSource schema
  • 生产数据

6.1 创建topic

### 创建topic
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wikipedia

复制代码

6.2 创建DataSource schema

### DataSource schema
### 安装包中自带,不需要创建。不过需要修改Kafka的地址
 vi /export/servers/imply-2.8.19/quickstart/wikipedia-kafka-supervisor.json 

复制代码

6.3 提交DataSource schema

### 提交DataSource schema
curl -XPOST -H'Content-Type: application/json' -d @/export/servers/imply-2.8.19/quickstart/wikipedia-kafka-supervisor.json http://node01:8090/druid/indexer/v1/supervisor

复制代码

提交完毕之后,访问管理页面能够看到新创建了一个DataSource。

访问地址: http://node03:9095/pivot/home

6.4 生产数据

使用kafka api生产数据

kafka-console-producer.sh --broker-list node01:9092 --topic wikipedia < /export/servers/imply-2.8.19/quickstart/wikipedia-2016-06-27-sampled.json  

复制代码

6.5 查看数据

SELECT FLOOR(__time TO DAY) AS "Day", count(*) AS Edits FROM "wikipedia-kafka" GROUP BY FLOOR(__time TO DAY);

复制代码

7、Hadoop集成测试

7.1 创建 DataSource schema

### DataSource schema
### 安装包中自带,不需要创建。不过需要修改Kafka的地址
/export/servers/imply-2.8.19/quickstart/wikipedia-index-hadoop.json 

复制代码

7.2 提交 DataSource schema

cd /export/servers/imply-2.8.19
bin/post-index-task --file quickstart/wikipedia-index-hadoop.json 

复制代码

7.3 查看数据

SELECT page, COUNT(*) AS Edits FROM wikipedia WHERE "__time" BETWEEN TIMESTAMP '2016-06-27 00:00:00' AND TIMESTAMP '2016-06-28 00:00:00' GROUP BY page ORDER BY Edits DESC LIMIT 5

复制代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

独角兽之路

独角兽之路

三节课产品社区 / 电子工业出版社 / 2016-7 / 79.00元

对2~3年以上经验的互联网人来说,最好的学习可能不是听课,而是分析各类真实的产品和运营案例。而《独角兽之路:20款快速爆发且极具潜力的互联网产品深度剖析(全彩)》正好提供了对滴滴出行、百度外卖、懂球帝、快手App等20款极具代表性的准独角兽产品的发展路径的深度分析。 通过阅读《独角兽之路:20款快速爆发且极具潜力的互联网产品深度剖析(全彩)》,你可以发现互联网产品发展的背后,或许存在着某些共......一起来看看 《独角兽之路》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具