MXNet 实现 Self-normalizing networks

栏目: 数据库 · 发布时间: 7年前

内容简介:MXNet 实现 Self-normalizing networks

MXNET-Scala Self-Norm Nets

MXNet-scala module implementation of Self-normalizing networks[1].

Based on: https://github.com/bioinf-jku/SNNs

Building

Tested on Ubuntu 14.04

Requirements

  • sbt 0.13
  • Mxnet

steps

1, compile Mxnet with CUDA, then compile the scala-pkg;

2,

cd Mxnet-Scala/SelfNormNets
mkdir lib

3, copy your compiled mxnet-full_2.11-linux-x86_64-gpu-0.10.1-SNAPSHOT.jar into lib folder;

4, run sbt, compile the project

Running

1, use datas/get_mnist_data.sh script to download the mnist dataset

2, run trainSNN_CNN_MNIST.sh or trainSNN_MLP_MNIST.sh under scripts folder

Training logs

Train MLP

logs

bash trainSNN_MLP_MNIST.sh

Epoch[0] Train-accuracy=0.86191666
Epoch[0] Time cost=1646
Epoch[0] Validation-accuracy=0.9341
Epoch[1] Train-accuracy=0.9213667
Epoch[1] Time cost=1478
Epoch[1] Validation-accuracy=0.9485
Epoch[2] Train-accuracy=0.9421667
Epoch[2] Time cost=1428
Epoch[2] Validation-accuracy=0.9402
Epoch[3] Train-accuracy=0.9501
Epoch[3] Time cost=1415
Epoch[3] Validation-accuracy=0.9669
Epoch[4] Train-accuracy=0.9571667
Epoch[4] Time cost=1604
Epoch[4] Validation-accuracy=0.9623
Epoch[5] Train-accuracy=0.96195
Epoch[5] Time cost=1457
Epoch[5] Validation-accuracy=0.9614
Epoch[6] Train-accuracy=0.9679667
Epoch[6] Time cost=1591
Epoch[6] Validation-accuracy=0.9673
Epoch[7] Train-accuracy=0.97048336
Epoch[7] Time cost=1629
Epoch[7] Validation-accuracy=0.9639
Epoch[8] Train-accuracy=0.9719333
Epoch[8] Time cost=1668
Epoch[8] Validation-accuracy=0.9703
Epoch[9] Train-accuracy=0.9753
Epoch[9] Time cost=1662
Epoch[9] Validation-accuracy=0.9728
Epoch[10] Train-accuracy=0.9769
Epoch[10] Time cost=1526
Epoch[10] Validation-accuracy=0.9752
Epoch[11] Train-accuracy=0.9784333
Epoch[11] Time cost=1487
Epoch[11] Validation-accuracy=0.9709
Epoch[12] Train-accuracy=0.98066664
Epoch[12] Time cost=1609
Epoch[12] Validation-accuracy=0.9753
Epoch[13] Train-accuracy=0.98113334
Epoch[13] Time cost=1475
Epoch[13] Validation-accuracy=0.9725
Epoch[14] Train-accuracy=0.98215
Epoch[14] Time cost=1477
Epoch[14] Validation-accuracy=0.9749

Compare selu with relu

logs

bash trainSNN_CNN_MNIST.sh

Epoch[0] SNN Train-accuracy=0.88266224
Epoch[0] ReLU Train-accuracy=0.807926
Epoch[1] SNN Train-accuracy=0.9415899
Epoch[1] ReLU Train-accuracy=0.8241854
Epoch[2] SNN Train-accuracy=0.95097154
Epoch[2] ReLU Train-accuracy=0.8243189
Epoch[3] SNN Train-accuracy=0.95880073
Epoch[3] ReLU Train-accuracy=0.833734
Epoch[4] SNN Train-accuracy=0.9629741
Epoch[4] ReLU Train-accuracy=0.82568777
Epoch[5] SNN Train-accuracy=0.96793205
Epoch[5] ReLU Train-accuracy=0.8318643
Epoch[6] SNN Train-accuracy=0.9703693
Epoch[6] ReLU Train-accuracy=0.8342181
Epoch[7] SNN Train-accuracy=0.97163796
Epoch[7] ReLU Train-accuracy=0.83628803
Epoch[8] SNN Train-accuracy=0.9741086
Epoch[8] ReLU Train-accuracy=0.8316807
Epoch[9] SNN Train-accuracy=0.9753105
Epoch[9] ReLU Train-accuracy=0.8397269
SNN Validation-accuracy=0.96334136
ReLU Validation-accuracy=0.9423077

Referneces

[1] Klambauer, Günter, et al. "Self-Normalizing Neural Networks." arXiv preprint arXiv:1706.02515 (2017).


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Probabilistic Method Second Edition

The Probabilistic Method Second Edition

Noga Alon、Joel H. Spencer / Wiley-Blackwell / 2000 / $121.95

The leading reference on probabilistic methods in combinatorics-now expanded and updated When it was first published in 1991, The Probabilistic Method became instantly the standard reference on one......一起来看看 《The Probabilistic Method Second Edition》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具