elasticsearch学习笔记(二十)——Elasticsearch bulk api的奇特json格式与底层性能优化关系

栏目: 后端 · 前端 · 发布时间: 5年前

内容简介:{"action": {"meta"}}n{"data"}n{"action": {"meta"}}n

bulk api奇特的json格式

{"action": {"meta"}}n

{"data"}n

{"action": {"meta"}}n

{"data"}n

...

为什么bulk要采用这种奇特的json格式?

由于bulk中的每个操作都可能要转发到不同的node的shard去执行,假设我们不用这种奇特的json格式,采用比较良好的json数组格式,允许任意的换行,整个可读性非常棒,读起来很爽。但是ES拿到这种标准格式的json串之后,要按照下述流程去进行执行处理。

格式如下:

[

{

"action": {
},
"data": {
}

}

]

(1)将json数组解析为JSONArray对象,这个时候,整个数据,就会在内存中出现一份一摸一样的拷贝,一份数据是json文本,一份数据是JSONArray对象

(2)解析json数组里面的每个json,对每个请求中的document进行路由

(3)为路由到同一个shard上的多个请求,创建一个请求数组

(4)将这个请求数组序列化

(5)将序列化后的请求数组发送到对应的节点上去

不难看出这样就会耗费更多的内存,更多的jvm gc开销。

假设一个场景,对于bulk size的大小一般建议在几千条,大小在10MB左右,所以说,可怕的事情来了。假设说现在100个bulk请求发送到了一个节点上去,然后每个请求是10MB,100个请求就是1000MB=1G,然后每个请求的json都copy一份JSONArray对象,此时内存中的占用就会翻倍,就会占用2GB的内存,甚至还不止,因为弄成JSONArray对象之后,还可能会多弄一些其它的数据结构,2GB+的内存占用。

占用更多的内存可能就会积压其它请求的内存使用量,比如说最重要的搜索请求,分析请求等等。此时就可能会导致其它请求的性能急速下降,另外的话,占用内存更多,就会导致 java 虚拟机的垃圾回收次数更多,更加频繁,每次要回收的垃圾对象更多,耗费的时间更多,导致ES的java虚拟机停止工作线程的时间更多。

而使用这个奇特格式的json

{"action": {"meta"}}n

{"data"}n

{"action": {"meta"}}n

{"data"}n

...

(1)不用将其转换为json对象,不会出现内存中的相同数据的拷贝,直接按照换行符切割json

(2)对每两个一组的json,读取meta,进行document路由

(3)直接将对应的json发送到node上去

和标准格式的json相比,最大的优势在于不需要将json数组解析为一个JSONArray对象,形成一份大数据的拷贝,浪费内存空间,尽可能的保证性能。

实战:

PUT _bulk
{"index": {"_index": "test", "_id": "1"}}
{"field1": "value1", "field2": "value2"}
{"index": {"_index": "test", "_id": "2"}}
{"field1": "value1 id2", "field2": "value2 id2"}
{"delete": {"_index": "test", "_id": "2"}}
{"create": {"_index": "test", "_id": "3"}}
{"field1": "value3"}
{"update": {"_index": "test", "_id": "1"}}
{"doc": {"field2": "value2"}}
{
  "took" : 68,
  "errors" : true,
  "items" : [
    {
      "index" : {
        "_index" : "test",
        "_type" : "_doc",
        "_id" : "1",
        "_version" : 2,
        "result" : "updated",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 4,
        "_primary_term" : 1,
        "status" : 200
      }
    },
    {
      "index" : {
        "_index" : "test",
        "_type" : "_doc",
        "_id" : "2",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 5,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "delete" : {
        "_index" : "test",
        "_type" : "_doc",
        "_id" : "2",
        "_version" : 2,
        "result" : "deleted",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 6,
        "_primary_term" : 1,
        "status" : 200
      }
    },
    {
      "create" : {
        "_index" : "test",
        "_type" : "_doc",
        "_id" : "3",
        "status" : 409,
        "error" : {
          "type" : "version_conflict_engine_exception",
          "reason" : "[3]: version conflict, document already exists (current version [1])",
          "index_uuid" : "rOLJZzIVTDCWtDQcJuei6w",
          "shard" : "0",
          "index" : "test"
        }
      }
    },
    {
      "update" : {
        "_index" : "test",
        "_type" : "_doc",
        "_id" : "1",
        "_version" : 2,
        "result" : "noop",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "status" : 200
      }
    }
  ]
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

人工智能

人工智能

(美)GeorgeF.Luger / 郭茂祖;刘扬;玄萍;王春宇 / 机械工业出版社 / 2010-1 / 79.00元

《人工智能复杂问题求解的结构和策略(原书第6版)》是一本经典的人工智能教材,全面阐述了人工智能的基础理论,有效结合了求解智能问题的数据结构以及实现的算法,把人工智能的应用程序应用于实际环境中,并从社会和哲学、心理学以及神经生理学角度对人工智能进行了独特的讨论。新版中增加了对“基于随机方法的机器学习”的介绍,并提出了一些新的主题,如涌现计算、本体论、随机分割算法等。 《人工智能复杂问题求解的结......一起来看看 《人工智能》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试