Rank-rank hypergeometric overlap (RRHO)

栏目: R语言 · 发布时间: 5年前

内容简介:最近看到一篇文献文章研究在Major depressive disorder(MMD)下,对6个brain regions(vmPFC, OFC, dlPFC, aINS, NAc, vSUB)进行转录组测序,研究不同性别下与MMD相关的6个brain regions的一些表达特征;通过RRHO来寻找brain regions的overlapping patterns,相当于找一些有共同影响作用的基因

最近看到一篇文献 Sex-specific transcriptional signatures in human depression ,其中提到了用Rank-rank hypergeometric overlap (RRHO)方法来寻找不同类型样本之间的overlap基因

文章研究在Major depressive disorder(MMD)下,对6个brain regions(vmPFC, OFC, dlPFC, aINS, NAc, vSUB)进行转录组测序,研究不同性别下与MMD相关的6个brain regions的一些表达特征;通过RRHO来寻找brain regions的overlapping patterns,相当于找一些有共同影响作用的基因

Rank-rank hypergeometric overlap (RRHO)

文章不做解读,但是这个RRHO方法的思路觉得有点意思,其出自文献 Rank–rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures

RRHO方法是将不同class样本的基因表达谱进行排序(两个class),然后利用超几何分布迭代计算所有组合的P值,进而找到最佳overlapping基因组合;这方法不需要预先人为设定阈值(比如差异基因阈值),所以是unbiased

我是通过其R包- RRHO 的源码理解其计算思路,然后结合上述方法学文章加以理解;其R包源码很简单(500行不到的代码),大致有以下几个步骤:

  • 对每组class样本计算其gene ranking;这个类似于GSEA中的ranking,可选的方法也一样,下图中用的是tTest,也可以用signal-to-noise等等;然后可以根据ranking绘制scatter plot,如果两个class之间一致性很高,那会有一条很好的线性回归线(对角线)
  • 对上述ranking按照降序排列,设置一个step(相当于基因组合的长度),穷尽两个class的组合,用的是 expand.grid 函数
  • 循环每个组合,计算每个组合的overlapping gene数以及通过超几何分布( phyper 函数)计算每个组合的P值;下图的 H(k,s,M,N)k 代表overlapping gene数, sM 分别代表两个class中每个组合的gene数, N 代表总gene数
  • 最后则是对于P值进行校正,默认是用BY(Benjamini-Yekutieli)方法进行多重检验校正;此外还有用Permutation(置换检验)方法(如果每组class的样本足够的多,至少6个样本)来评估hypergeometric map的整体统计学意义,这里跟GSEA也比较相似,既可以选择sample permutation也可以选择gene permutation,但是文章作者建议使用前者(PS. R包则默认使用后者。。。)

Rank-rank hypergeometric overlap (RRHO)

RRHO的结果怎么看呢,文章也给出了以下几点建议:

  • Different map patterns indicate different types of overlap, such as the full profiles being correlated or only genes increasing in both experiments overlapping(看看整体表达趋势或者表达量同增的模式)
  • The highest intensity point on the map can be used to extract the most statistically significant overlapping gene set(如果看到RRHO maps上有异常明显overlaping点,可以提取该set作为显著overlapping基因)
  • To compare relative overlap pairwise within a set of profiles(就像最开始那篇文章用的,将多个brain regions的RRHO maps整合在一起比较)
  • To compare an experimental profile to a series of reference signatures(将RRHO结果与其它reference signatures做比较)

其实已有人对RRHO方法做了整理,如一篇公众号文章 超几何分布,RRHO–数据驱动寻找重叠基因 ,里面以PPT形式展示

生物信息分析方法繁多,各式各样的都有,所以有些方法不一定要用它,但是理解一下其思路也是不错的选择

本文出自于 http://www.bioinfo-scrounger.com 转载请注明出处


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

黑客与画家

黑客与画家

[美] Paul Graham / 阮一峰 / 人民邮电出版社 / 2013-10 / 69.00元

本书是硅谷创业之父Paul Graham 的文集,主要介绍黑客即优秀程序员的爱好和动机,讨论黑客成长、黑客对世界的贡献以及编程语言和黑客工作方法等所有对计算机时代感兴趣的人的一些话题。书中的内容不但有助于了解计算机编程的本质、互联网行业的规则,还会帮助读者了解我们这个时代,迫使读者独立思考。 本书适合所有程序员和互联网创业者,也适合一切对计算机行业感兴趣的读者。一起来看看 《黑客与画家》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

MD5 加密
MD5 加密

MD5 加密工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具