提交任务到Spark

栏目: 编程工具 · 发布时间: 7年前

内容简介:提交任务到Spark

1.场景

在搭建好Hadoop+Spark环境后,现准备在此环境上提交简单的任务到Spark进行计算并输出结果。搭建过程: http://www.linuxidc.com/Linux/2017-06/144926.htm

本人比较熟悉 Java 语言,现以Java的WordCount为例讲解这整个过程,要实现计算出给定文本中每个单词出现的次数。

2.环境测试

在讲解例子之前,我想先测试一下之前搭建好的环境。

2.1测试Hadoop环境

首先创建一个文件wordcount.txt 内容如下:

Hello hadoop
hello spark
hello bigdata
yellow banana
red apple

然后执行如下命令:

hadoop fs -mkdir -p /Hadoop/Input (在HDFS创建目录)

hadoop fs -put wordcount.txt /Hadoop/Input (将wordcount.txt文件上传到HDFS)

hadoop fs -ls /Hadoop/Input (查看上传的文件)

hadoop fs -text /Hadoop/Input/wordcount.txt (查看文件内容)

2.2Spark环境测试

我使用spark-shell,做一个简单的WordCount的测试。我就用上面Hadoop测试上传到HDFS的文件wordcount.txt。

首先启动spark-shell命令:

spark-shell

提交任务到Spark

然后直接输入scala语句:

val file=sc.textFile("hdfs://Master:9000/Hadoop/Input/wordcount.txt")

val rdd = file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)

rdd.collect()

rdd.foreach(println)

提交任务到Spark

退出使用如下命令:

:quit

这样环境测试就结束了。

3.Java实现单词计数

package com.example.spark;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.regex.Pattern;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

public final class WordCount {
    private static final Pattern SPACE = Pattern.compile(" ");

    public static void main(String[] args) throws Exception {
        SparkConf conf = new SparkConf().setAppName("kevin's first spark app");
        JavaSparkContext sc = new JavaSparkContext(conf);
        JavaRDD<String> lines = sc.textFile(args[0]).cache();
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Iterator<String> call(String s) {
                return Arrays.asList(SPACE.split(s)).iterator();
            }
        });

        JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Tuple2<String, Integer> call(String s) {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer i1, Integer i2) {
                return i1 + i2;
            }
        });

        List<Tuple2<String, Integer>> output = counts.collect();
        for (Tuple2<?, ?> tuple : output) {
            System.out.println(tuple._1() + ": " + tuple._2());
        }

        sc.close();
    }
}

4.任务提交实现

将上面Java实现的单词计数打成jar包spark-example-0.0.1-SNAPSHOT.jar,并且将jar包上传到Master节点,我是将jar包上传到/opt目录下,本文将以两种方式提交任务到spark,第一种是以spark-submit命令的方式提交任务,第二种是以java web的方式提交任务。

4.1以spark-submit命令的方式提交任务

spark-submit --master spark://114.55.246.88:7077 --class com.example.spark.WordCount /opt/spark-example-0.0.1-SNAPSHOT.jar hdfs://Master:9000/Hadoop/Input/wordcount.txt

4.2以java web的方式提交任务

我是用spring boot搭建的java web框架,实现代码如下:

1)新建maven项目spark-submit

2)pom.xml文件内容, 这里要注意spark的依赖jar包要与scala的版本相对应,如spark-core_2.11,这后面2.11就是你安装的scala的版本

<?xml version="1.0"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.4.1.RELEASE</version>
    </parent>
    <artifactId>spark-submit</artifactId>
    <description>spark-submit</description>
    <properties>
        <start-class>com.example.spark.SparkSubmitApplication</start-class>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <java.version>1.8</java.version>
        <commons.version>3.4</commons.version>
        <org.apache.spark-version>2.1.0</org.apache.spark-version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
            <version>${commons.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.tomcat.embed</groupId>
            <artifactId>tomcat-embed-jasper</artifactId>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>com.jayway.jsonpath</groupId>
            <artifactId>json-path</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <exclusions>
                <exclusion>
                    <artifactId>spring-boot-starter-tomcat</artifactId>
                    <groupId>org.springframework.boot</groupId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jetty</artifactId>
            <exclusions>
                <exclusion>
                    <groupId>org.eclipse.jetty.websocket</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
            </exclusions>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jetty</artifactId>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>javax.servlet</groupId>
            <artifactId>jstl</artifactId>
        </dependency>
        <dependency>
            <groupId>org.eclipse.jetty</groupId>
            <artifactId>apache-jsp</artifactId>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-solr</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>javax.servlet</groupId>
            <artifactId>jstl</artifactId>
        </dependency>
        
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${org.apache.spark-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${org.apache.spark-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>${org.apache.spark-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${org.apache.spark-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka_2.11</artifactId>
            <version>1.6.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-graphx_2.11</artifactId>
            <version>${org.apache.spark-version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.0.0</version>
        </dependency>

        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.6.5</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.6.5</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-annotations</artifactId>
            <version>2.6.5</version>
        </dependency>

    </dependencies>
    <packaging>war</packaging>

    <repositories>
        <repository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <snapshots>
                <enabled>true</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
        <repository>
            <id>maven2</id>
            <url>http://repo1.maven.org/maven2/</url>
        </repository>
    </repositories>
    <pluginRepositories>
        <pluginRepository>
            <id>spring-snapshots</id>
            <name>Spring Snapshots</name>
            <url>https://repo.spring.io/snapshot</url>
            <snapshots>
                <enabled>true</enabled>
            </snapshots>
        </pluginRepository>
        <pluginRepository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </pluginRepository>
    </pluginRepositories>

    <build>
        <plugins>
            <plugin>
                <artifactId>maven-war-plugin</artifactId>
                <configuration>
                    <warSourceDirectory>src/main/webapp</warSourceDirectory>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.mortbay.jetty</groupId>
                <artifactId>jetty-maven-plugin</artifactId>
                <configuration>
                    <systemProperties>
                        <systemProperty>
                            <name>spring.profiles.active</name>
                            <value>development</value>
                        </systemProperty>
                        <systemProperty>
                            <name>org.eclipse.jetty.server.Request.maxFormContentSize</name>
                            <!-- -1代表不作限制 -->
                            <value>600000</value>
                        </systemProperty>
                    </systemProperties>
                    <useTestClasspath>true</useTestClasspath>
                    <webAppConfig>
                        <contextPath>/</contextPath>
                    </webAppConfig>
                    <connectors>
                        <connector implementation="org.eclipse.jetty.server.nio.SelectChannelConnector">
                            <port>7080</port>
                        </connector>
                    </connectors>
                </configuration>
            </plugin>
        </plugins>

    </build>
</project> 

3)SubmitJobToSpark.java

package com.example.spark;

import org.apache.spark.deploy.SparkSubmit;

/**
 * @author kevin
 *
 */
public class SubmitJobToSpark {

    public static void submitJob() {
        String[] args = new String[] { "--master", "spark://114.55.246.88:7077", "--name", "test java submit job to spark", "--class", "com.example.spark.WordCount", "/opt/spark-example-0.0.1-SNAPSHOT.jar", "hdfs://Master:9000/Hadoop/Input/wordcount.txt" };
        SparkSubmit.main(args);
    }
}

4)SparkController.java

package com.example.spark.web.controller;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;

import com.example.spark.SubmitJobToSpark;

@Controller
@RequestMapping("spark")
public class SparkController {
    private Logger logger = LoggerFactory.getLogger(SparkController.class);

    @RequestMapping(value = "sparkSubmit", method = { RequestMethod.GET, RequestMethod.POST })
    @ResponseBody
    public String sparkSubmit(HttpServletRequest request, HttpServletResponse response) {
        logger.info("start submit spark tast...");
        SubmitJobToSpark.submitJob();
        return "hello";
    }

}

5)将项目spark-submit打成war包部署到Master节点tomcat上,访问如下请求:

http://114.55.246.88:9090/spark-submit/spark/sparkSubmit

在tomcat的log中能看到计算的结果。

更多 Spark 相关教程见以下内容

CentOS 7.0下安装并配置Spark  http://www.linuxidc.com/Linux/2015-08/122284.htm

Spark1.0.0部署指南 http://www.linuxidc.com/Linux/2014-07/104304.htm

Spark2.0安装配置文档 http://www.linuxidc.com/Linux/2016-09/135352.htm

Spark 1.5、Hadoop 2.7 集群环境搭建 http://www.linuxidc.com/Linux/2016-09/135067.htm

Spark官方文档 - 中文翻译 http://www.linuxidc.com/Linux/2016-04/130621.htm

CentOS 6.2(64位)下安装Spark0.8.0详细记录 http://www.linuxidc.com/Linux/2014-06/102583.htm

Spark2.0.2 Hadoop2.6.4全分布式配置详解 http://www.linuxidc.com/Linux/2016-11/137367.htm

Ubuntu 14.04 LTS 安装 Spark 1.6.0 (伪分布式) http://www.linuxidc.com/Linux/2016-03/129068.htm

Spark 的详细介绍 请点这里

Spark 的下载地址 请点这里

本文永久更新链接地址 http://www.linuxidc.com/Linux/2017-06/144928.htm


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

腾讯传

腾讯传

吴晓波 / 浙江大学出版社 / 2017-1-1 / 58.00元

腾讯官方唯一授权的权威传记 著名财经作家吴晓波倾力之作 当市值最高的中国互联网公司,遇上中国财经界最冷静的一双眼睛 读懂腾讯,读懂中国互联网 . 内容简介 本书全景式地记录了腾讯崛起的经历,并以互联网的视角重新诠释了中国在融入全球化进程中的曲折与独特性。 从1998年开始创业到成为世界级互联网巨头,腾讯以即时通信工具起步,逐渐进入社交网络、互动娱乐、网络媒......一起来看看 《腾讯传》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具