内容简介:提交任务到Spark
1.场景
在搭建好Hadoop+Spark环境后,现准备在此环境上提交简单的任务到Spark进行计算并输出结果。搭建过程: http://www.linuxidc.com/Linux/2017-06/144926.htm
本人比较熟悉 Java 语言,现以Java的WordCount为例讲解这整个过程,要实现计算出给定文本中每个单词出现的次数。
2.环境测试
在讲解例子之前,我想先测试一下之前搭建好的环境。
2.1测试Hadoop环境
首先创建一个文件wordcount.txt 内容如下:
Hello hadoop hello spark hello bigdata yellow banana red apple
然后执行如下命令:
hadoop fs -mkdir -p /Hadoop/Input (在HDFS创建目录)
hadoop fs -put wordcount.txt /Hadoop/Input (将wordcount.txt文件上传到HDFS)
hadoop fs -ls /Hadoop/Input (查看上传的文件)
hadoop fs -text /Hadoop/Input/wordcount.txt (查看文件内容)
2.2Spark环境测试
我使用spark-shell,做一个简单的WordCount的测试。我就用上面Hadoop测试上传到HDFS的文件wordcount.txt。
首先启动spark-shell命令:
spark-shell
然后直接输入scala语句:
val file=sc.textFile("hdfs://Master:9000/Hadoop/Input/wordcount.txt")
val rdd = file.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey(_+_)
rdd.collect()
rdd.foreach(println)
退出使用如下命令:
:quit
这样环境测试就结束了。
3.Java实现单词计数
package com.example.spark; import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; public final class WordCount { private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) throws Exception { SparkConf conf = new SparkConf().setAppName("kevin's first spark app"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> lines = sc.textFile(args[0]).cache(); JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override public Iterator<String> call(String s) { return Arrays.asList(SPACE.split(s)).iterator(); } }); JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } }); JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer i1, Integer i2) { return i1 + i2; } }); List<Tuple2<String, Integer>> output = counts.collect(); for (Tuple2<?, ?> tuple : output) { System.out.println(tuple._1() + ": " + tuple._2()); } sc.close(); } }
4.任务提交实现
将上面Java实现的单词计数打成jar包spark-example-0.0.1-SNAPSHOT.jar,并且将jar包上传到Master节点,我是将jar包上传到/opt目录下,本文将以两种方式提交任务到spark,第一种是以spark-submit命令的方式提交任务,第二种是以java web的方式提交任务。
4.1以spark-submit命令的方式提交任务
spark-submit --master spark://114.55.246.88:7077 --class com.example.spark.WordCount /opt/spark-example-0.0.1-SNAPSHOT.jar hdfs://Master:9000/Hadoop/Input/wordcount.txt
4.2以java web的方式提交任务
我是用spring boot搭建的java web框架,实现代码如下:
1)新建maven项目spark-submit
2)pom.xml文件内容, 这里要注意spark的依赖jar包要与scala的版本相对应,如spark-core_2.11,这后面2.11就是你安装的scala的版本 。
<?xml version="1.0"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.4.1.RELEASE</version> </parent> <artifactId>spark-submit</artifactId> <description>spark-submit</description> <properties> <start-class>com.example.spark.SparkSubmitApplication</start-class> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <java.version>1.8</java.version> <commons.version>3.4</commons.version> <org.apache.spark-version>2.1.0</org.apache.spark-version> </properties> <dependencies> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>${commons.version}</version> </dependency> <dependency> <groupId>org.apache.tomcat.embed</groupId> <artifactId>tomcat-embed-jasper</artifactId> <scope>provided</scope> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>com.jayway.jsonpath</groupId> <artifactId>json-path</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> <exclusions> <exclusion> <artifactId>spring-boot-starter-tomcat</artifactId> <groupId>org.springframework.boot</groupId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jetty</artifactId> <exclusions> <exclusion> <groupId>org.eclipse.jetty.websocket</groupId> <artifactId>*</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jetty</artifactId> <scope>provided</scope> </dependency> <dependency> <groupId>javax.servlet</groupId> <artifactId>jstl</artifactId> </dependency> <dependency> <groupId>org.eclipse.jetty</groupId> <artifactId>apache-jsp</artifactId> <scope>provided</scope> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-solr</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>javax.servlet</groupId> <artifactId>jstl</artifactId> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${org.apache.spark-version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${org.apache.spark-version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>${org.apache.spark-version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>${org.apache.spark-version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.11</artifactId> <version>1.6.3</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-graphx_2.11</artifactId> <version>${org.apache.spark-version}</version> </dependency> <dependency> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-assembly-plugin</artifactId> <version>3.0.0</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-core</artifactId> <version>2.6.5</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.6.5</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-annotations</artifactId> <version>2.6.5</version> </dependency> </dependencies> <packaging>war</packaging> <repositories> <repository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <snapshots> <enabled>true</enabled> </snapshots> </repository> <repository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </repository> <repository> <id>maven2</id> <url>http://repo1.maven.org/maven2/</url> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>spring-snapshots</id> <name>Spring Snapshots</name> <url>https://repo.spring.io/snapshot</url> <snapshots> <enabled>true</enabled> </snapshots> </pluginRepository> <pluginRepository> <id>spring-milestones</id> <name>Spring Milestones</name> <url>https://repo.spring.io/milestone</url> <snapshots> <enabled>false</enabled> </snapshots> </pluginRepository> </pluginRepositories> <build> <plugins> <plugin> <artifactId>maven-war-plugin</artifactId> <configuration> <warSourceDirectory>src/main/webapp</warSourceDirectory> </configuration> </plugin> <plugin> <groupId>org.mortbay.jetty</groupId> <artifactId>jetty-maven-plugin</artifactId> <configuration> <systemProperties> <systemProperty> <name>spring.profiles.active</name> <value>development</value> </systemProperty> <systemProperty> <name>org.eclipse.jetty.server.Request.maxFormContentSize</name> <!-- -1代表不作限制 --> <value>600000</value> </systemProperty> </systemProperties> <useTestClasspath>true</useTestClasspath> <webAppConfig> <contextPath>/</contextPath> </webAppConfig> <connectors> <connector implementation="org.eclipse.jetty.server.nio.SelectChannelConnector"> <port>7080</port> </connector> </connectors> </configuration> </plugin> </plugins> </build> </project>
3)SubmitJobToSpark.java
package com.example.spark; import org.apache.spark.deploy.SparkSubmit; /** * @author kevin * */ public class SubmitJobToSpark { public static void submitJob() { String[] args = new String[] { "--master", "spark://114.55.246.88:7077", "--name", "test java submit job to spark", "--class", "com.example.spark.WordCount", "/opt/spark-example-0.0.1-SNAPSHOT.jar", "hdfs://Master:9000/Hadoop/Input/wordcount.txt" }; SparkSubmit.main(args); } }
4)SparkController.java
package com.example.spark.web.controller; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestMethod; import org.springframework.web.bind.annotation.ResponseBody; import com.example.spark.SubmitJobToSpark; @Controller @RequestMapping("spark") public class SparkController { private Logger logger = LoggerFactory.getLogger(SparkController.class); @RequestMapping(value = "sparkSubmit", method = { RequestMethod.GET, RequestMethod.POST }) @ResponseBody public String sparkSubmit(HttpServletRequest request, HttpServletResponse response) { logger.info("start submit spark tast..."); SubmitJobToSpark.submitJob(); return "hello"; } }
5)将项目spark-submit打成war包部署到Master节点tomcat上,访问如下请求:
http://114.55.246.88:9090/spark-submit/spark/sparkSubmit
在tomcat的log中能看到计算的结果。
更多 Spark 相关教程见以下内容 :
CentOS 7.0下安装并配置Spark http://www.linuxidc.com/Linux/2015-08/122284.htm
Spark1.0.0部署指南 http://www.linuxidc.com/Linux/2014-07/104304.htm
Spark2.0安装配置文档 http://www.linuxidc.com/Linux/2016-09/135352.htm
Spark 1.5、Hadoop 2.7 集群环境搭建 http://www.linuxidc.com/Linux/2016-09/135067.htm
Spark官方文档 - 中文翻译 http://www.linuxidc.com/Linux/2016-04/130621.htm
CentOS 6.2(64位)下安装Spark0.8.0详细记录 http://www.linuxidc.com/Linux/2014-06/102583.htm
Spark2.0.2 Hadoop2.6.4全分布式配置详解 http://www.linuxidc.com/Linux/2016-11/137367.htm
Ubuntu 14.04 LTS 安装 Spark 1.6.0 (伪分布式) http://www.linuxidc.com/Linux/2016-03/129068.htm
Spark 的详细介绍 : 请点这里
Spark 的下载地址 : 请点这里
本文永久更新链接地址 : http://www.linuxidc.com/Linux/2017-06/144928.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Spark 源码分析(一):Spark Submit 任务提交
- spark源码解析-从提交任务到jar的加载运行(基于2.1.0版本)
- JAVA线程池原理源码解析—为什么启动一个线程池,提交一个任务后,Main方法不会退出?
- Git提交错误时如何删除Git提交记录
- 分布式系统 - 两段式提交(2PC)和三段式提交(3PC)
- 减半前,比特币开发者代码提交数创历史新高:4月累计提交510次
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
游戏编程权威指南
Mike McShaffry 麦克沙福瑞、David “Rez” Graham 格雷海姆 / 师蓉、李静、李青翠 / 人民邮电 / 2016-3 / 99.00元
全书分为4个部分共24章。首部分是游戏编程基础,主要介绍了游戏编程的定义、游戏架构等基础知识。 第二部分是让游戏跑起来,主要介绍了初始化和关闭代码、主循环、游戏主题和用户界面等。 第三部分是核心游戏技术,主要介绍了一些*为复杂的代码 示例,如3D编程、游戏音频、物理和AI编程等。 第四部分是综合应用,主要介绍了网络编程、多道程序设计和用C#创建工具等,并利用前面所讲的 知识开发出......一起来看看 《游戏编程权威指南》 这本书的介绍吧!