JDK1.8源码分析之HashMap

栏目: 编程工具 · 发布时间: 5年前

内容简介:比较之前的jdk版本,这次1.8版本,对于hashMap做了很大的优化。最重要的一个优化就是桶中的元素不在唯一按照链表组合,也可以使用红黑树进行存储,总之,目标只有一个,那就是在安全和功能性完备的情况下其速度更快,提升性能。说明:展示了hashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;

比较之前的jdk版本,这次1.8版本,对于hashMap做了很大的优化。最重要的一个优化就是桶中的元素不在唯一按照链表组合,也可以使用红黑树进行存储,总之,目标只有一个,那就是在安全和功能性完备的情况下其速度更快,提升性能。

二、HashMap数据结构

JDK1.8源码分析之HashMap

说明:展示了hashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。

三、HashMap源码分析

3.1类的继承关系

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
复制代码

可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现序列化,即可以将HashMap对象保存本地,之后可以恢复状态。

3.2类的属性

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;    
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30; 
    // 默认的填充因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8; 
    // 当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table; 
    // 存放具体元素的集
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;   
    // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    // 填充因子
    final float loadFactor;
}
复制代码

3.3 类的构造函数

1.HashMap(int,float)型构造函数

public HashMap(int initialCapacity, float loadFactor) {
    // 初始容量不能小于0,否则报错
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                            initialCapacity);
    // 初始容量不能大于最大值,否则为最大值
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // 填充因子不能小于或等于0,不能为非数字
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                            loadFactor);
    // 初始化填充因子                                        
    this.loadFactor = loadFactor;
    // 初始化threshold大小
    this.threshold = tableSizeFor(initialCapacity);    
}
复制代码

说明:tableSizeFor(initialCapacity)返回大于等于initialCapacity的最小的二次幂数值。

static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
复制代码

说明:>>> 操作符表示无符号右移,高位取0。

2.HashMap(int)型构造函数

public HashMap(int initialCapacity) {
    // 调用HashMap(int, float)型构造函数
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
复制代码

3.HashMap()型构造函数

public HashMap() {
    // 初始化填充因子
    this.loadFactor = DEFAULT_LOAD_FACTOR; 
}
复制代码

4.HashMap(Map)型构造函数

public HashMap(Map<? extends K, ? extends V> m) {
    // 初始化填充因子
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 将m中的所有元素添加至HashMap中
    putMapEntries(m, false);
}
复制代码

说明:putMapEntries(Map m,boolean evict)函数将m的所有元素存入本地HashMap示例中。

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            // 未初始化,s为m的实际元素个数
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            // 计算得到的t大于阈值,则初始化阈值
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}
复制代码

3.4重要函数分析

1.putVal函数

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素
    else {
        Node<K,V> e; K k;
        // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                // 将第一个元素赋值给e,用e来记录
                e = p;
        // hash值不相等,即key不相等;为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值,转化为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) { 
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}
复制代码

说明:HashMap并没有直接提供putVal接口给用户调用,而是提供的put函数,而put函数就是通过putVal来插入元素的。

2.getNode函数

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // table已经初始化,长度大于0,根据hash寻找table中的项也不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 桶中第一项(数组元素)相等
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 桶中不止一个结点
        if ((e = first.next) != null) {
            // 为红黑树结点
            if (first instanceof TreeNode)
                // 在红黑树中查找
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则,在链表中查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
复制代码

说明:HashMap并没有直接提供getNode接口给用户,而是提供的get函数,而get函数就是通过getNode来取得元素的。

3.resize函数

final Node<K,V>[] resize() {
    // 当前table保存
    Node<K,V>[] oldTab = table;
    // 保存table大小
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    // 保存当前阈值 
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 之前table大小大于0
    if (oldCap > 0) {
        // 之前table大于最大容量
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 阈值为最大整形
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 容量翻倍,使用左移,效率更高
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
            oldCap >= DEFAULT_INITIAL_CAPACITY)
            // 阈值翻倍
            newThr = oldThr << 1; // double threshold
    }
    // 之前阈值大于0
    else if (oldThr > 0)
        newCap = oldThr;
    // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
    else {           
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 新阈值为0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    // 初始化table
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 之前的table已经初始化过
    if (oldTab != null) {
        // 复制元素,重新进行hash
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
复制代码

说明:进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

在resize前和resize后的元素布局如下:

JDK1.8源码分析之HashMap

说明:上图只是针对了数组下标为2的桶中的各个元素在扩容后的分配布局,其他各个桶中的元素布局可以以此类推。

四、针对HashMap的思考

4.1 关于扩容的思考从putVal源代码中我们可以知道,当插入一个元素的时候size就加一,若size大于threshold的时候,就会进行扩容。假设我们的capacity大小为32,loadFator为0.75,则threshold为24=32*0.75,此时,插入25个元素,并且插入25个元素都在同一个桶中,桶中的数据结构为红黑树,则还有31个桶是空的,也会进行扩容处理,其实,此时,还有31个桶是空的,好像似乎不需要进行扩容处理的,因为此时我们的capacity大小可能不适当。

我们前面知道,扩容处理会遍历所有的元素,时间复杂度很高;前面还知道,经过一次扩容处理后,元素会更加均匀的分布在各个桶中农,会提升访问效率。所以,说尽量避免进行扩容处理,也就意味着,遍历元素所带来的坏处大于元素在桶中均匀分布所带来的好处。

五、总结

至此,HashMap的源码就分析到这里了,其中理解了其中的核心函数和数据结构,那么理解HashMap的源码就不困难了。当然,此次分析中还有一些知识点没有涉及到,如红黑树、序列化、拷贝等,后面的博文会继续补充分析这些内容的。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Cascading Style Sheets 2.0 Programmer's Reference

Cascading Style Sheets 2.0 Programmer's Reference

Eric A. Meyer / McGraw-Hill Osborne Media / 2001-03-20 / USD 19.99

The most authoritative quick reference available for CSS programmers. This handy resource gives you programming essentials at your fingertips, including all the new tags and features in CSS 2.0. You'l......一起来看看 《Cascading Style Sheets 2.0 Programmer's Reference》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

SHA 加密
SHA 加密

SHA 加密工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试