[源码分析] kube-scheduler源码分析(五)之 PrioritizeNodes

栏目: 编程工具 · 发布时间: 5年前

内容简介:以下代码分析基于本文主要分析

kube-scheduler源码分析(五)之 PrioritizeNodes

以下代码分析基于 kubernetes v1.12.0 版本。

本文主要分析 优选策略 逻辑,即从预选的节点中选择出最优的节点。优选策略的具体实现函数为 PrioritizeNodesPrioritizeNodes 最终返回是一个记录了各个节点分数的列表。

1. 调用入口

genericScheduler.Schedule 中对 PrioritizeNodes 的调用过程如下:

此部分代码位于pkg/scheduler/core/generic_scheduler.go

func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (string, error) {
  ...
	trace.Step("Prioritizing")
	startPriorityEvalTime := time.Now()
	// When only one node after predicate, just use it.
	if len(filteredNodes) == 1 {
		metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
		return filteredNodes[0].Name, nil
	}

	metaPrioritiesInterface := g.priorityMetaProducer(pod, g.cachedNodeInfoMap)
  // 执行优选逻辑的操作,返回记录各个节点分数的列表
	priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)
	if err != nil {
		return "", err
	}
	metrics.SchedulingAlgorithmPriorityEvaluationDuration.Observe(metrics.SinceInMicroseconds(startPriorityEvalTime))
	metrics.SchedulingLatency.WithLabelValues(metrics.PriorityEvaluation).Observe(metrics.SinceInSeconds(startPriorityEvalTime))
  ...
}

核心代码:

// 基于预选节点filteredNodes进一步筛选优选的节点,返回记录各个节点分数的列表
priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)

2. PrioritizeNodes

优选,从满足的节点中选择出最优的节点。 PrioritizeNodes 最终返回是一个记录了各个节点分数的列表。

具体操作如下:

  • PrioritizeNodes通过并行运行各个优先级函数来对节点进行优先级排序。
  • 每个优先级函数会给节点打分,打分范围为0-10分。
  • 0 表示优先级最低的节点,10表示优先级最高的节点。
  • 每个优先级函数也有各自的权重。
  • 优先级函数返回的节点分数乘以权重以获得加权分数。
  • 最后组合(添加)所有分数以获得所有节点的总加权分数。

PrioritizeNodes主要流程如下:

  1. 如果没有设置优选函数和拓展函数,则全部节点设置相同的分数,直接返回。
  2. 依次给node执行map函数进行打分。
  3. 再对上述map函数的执行结果执行reduce函数计算最终得分。
  4. 最后根据不同优先级函数的权重对得分取加权平均数。

入参:

  • pod
  • nodeNameToInfo
  • meta interface{},
  • priorityConfigs
  • nodes
  • extenders

出参:

  • HostPriorityList:记录节点分数的列表。

HostPriority 定义如下:

// HostPriority represents the priority of scheduling to a particular host, higher priority is better.
type HostPriority struct {
	// Name of the host
	Host string
	// Score associated with the host
	Score int
}

PrioritizeNodes 完整代码如下:

此部分代码位于pkg/scheduler/core/generic_scheduler.go

// PrioritizeNodes prioritizes the nodes by running the individual priority functions in parallel.
// Each priority function is expected to set a score of 0-10
// 0 is the lowest priority score (least preferred node) and 10 is the highest
// Each priority function can also have its own weight
// The node scores returned by the priority function are multiplied by the weights to get weighted scores
// All scores are finally combined (added) to get the total weighted scores of all nodes
func PrioritizeNodes(
	pod *v1.Pod,
	nodeNameToInfo map[string]*schedulercache.NodeInfo,
	meta interface{},
	priorityConfigs []algorithm.PriorityConfig,
	nodes []*v1.Node,
	extenders []algorithm.SchedulerExtender,
) (schedulerapi.HostPriorityList, error) {
	// If no priority configs are provided, then the EqualPriority function is applied
	// This is required to generate the priority list in the required format
	if len(priorityConfigs) == 0 && len(extenders) == 0 {
		result := make(schedulerapi.HostPriorityList, 0, len(nodes))
		for i := range nodes {
			hostPriority, err := EqualPriorityMap(pod, meta, nodeNameToInfo[nodes[i].Name])
			if err != nil {
				return nil, err
			}
			result = append(result, hostPriority)
		}
		return result, nil
	}

	var (
		mu   = sync.Mutex{}
		wg   = sync.WaitGroup{}
		errs []error
	)
	appendError := func(err error) {
		mu.Lock()
		defer mu.Unlock()
		errs = append(errs, err)
	}

	results := make([]schedulerapi.HostPriorityList, len(priorityConfigs), len(priorityConfigs))

	for i, priorityConfig := range priorityConfigs {
		if priorityConfig.Function != nil {
			// DEPRECATED
			wg.Add(1)
			go func(index int, config algorithm.PriorityConfig) {
				defer wg.Done()
				var err error
				results[index], err = config.Function(pod, nodeNameToInfo, nodes)
				if err != nil {
					appendError(err)
				}
			}(i, priorityConfig)
		} else {
			results[i] = make(schedulerapi.HostPriorityList, len(nodes))
		}
	}
	processNode := func(index int) {
		nodeInfo := nodeNameToInfo[nodes[index].Name]
		var err error
		for i := range priorityConfigs {
			if priorityConfigs[i].Function != nil {
				continue
			}
			results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
			if err != nil {
				appendError(err)
				return
			}
		}
	}
	workqueue.Parallelize(16, len(nodes), processNode)
	for i, priorityConfig := range priorityConfigs {
		if priorityConfig.Reduce == nil {
			continue
		}
		wg.Add(1)
		go func(index int, config algorithm.PriorityConfig) {
			defer wg.Done()
			if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
				appendError(err)
			}
			if glog.V(10) {
				for _, hostPriority := range results[index] {
					glog.Infof("%v -> %v: %v, Score: (%d)", pod.Name, hostPriority.Host, config.Name, hostPriority.Score)
				}
			}
		}(i, priorityConfig)
	}
	// Wait for all computations to be finished.
	wg.Wait()
	if len(errs) != 0 {
		return schedulerapi.HostPriorityList{}, errors.NewAggregate(errs)
	}

	// Summarize all scores.
	result := make(schedulerapi.HostPriorityList, 0, len(nodes))

	for i := range nodes {
		result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
		for j := range priorityConfigs {
			result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
		}
	}

	if len(extenders) != 0 && nodes != nil {
		combinedScores := make(map[string]int, len(nodeNameToInfo))
		for _, extender := range extenders {
			if !extender.IsInterested(pod) {
				continue
			}
			wg.Add(1)
			go func(ext algorithm.SchedulerExtender) {
				defer wg.Done()
				prioritizedList, weight, err := ext.Prioritize(pod, nodes)
				if err != nil {
					// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
					return
				}
				mu.Lock()
				for i := range *prioritizedList {
					host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
					combinedScores[host] += score * weight
				}
				mu.Unlock()
			}(extender)
		}
		// wait for all go routines to finish
		wg.Wait()
		for i := range result {
			result[i].Score += combinedScores[result[i].Host]
		}
	}

	if glog.V(10) {
		for i := range result {
			glog.V(10).Infof("Host %s => Score %d", result[i].Host, result[i].Score)
		}
	}
	return result, nil
}

以下对 PrioritizeNodes 分段进行分析。

3. EqualPriorityMap

如果没有提供优选函数和拓展函数,则将所有的节点设置为相同的优先级,即节点的score都为1,然后直接返回结果。(但一般情况下优选函数列表都不为空)

// If no priority configs are provided, then the EqualPriority function is applied
// This is required to generate the priority list in the required format
if len(priorityConfigs) == 0 && len(extenders) == 0 {
	result := make(schedulerapi.HostPriorityList, 0, len(nodes))
	for i := range nodes {
		hostPriority, err := EqualPriorityMap(pod, meta, nodeNameToInfo[nodes[i].Name])
		if err != nil {
			return nil, err
		}
		result = append(result, hostPriority)
	}
	return result, nil
}

EqualPriorityMap具体实现如下:

// EqualPriorityMap is a prioritizer function that gives an equal weight of one to all nodes
func EqualPriorityMap(_ *v1.Pod, _ interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
	node := nodeInfo.Node()
	if node == nil {
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
	}
	return schedulerapi.HostPriority{
		Host:  node.Name,
		Score: 1,
	}, nil
}

4. processNode

processNode 就是基于index拿出node的信息,调用之前注册的各种优选函数(此处是 mapFunction ),通过优选函数对node和pod进行处理,最后返回一个记录node分数的列表 resultprocessNode 同样也使用 workqueue.Parallelize 来进行并行处理。( processNode 类似于预选逻辑 findNodesThatFit 中使用到的 checkNode 的作用)

其中优选函数是通过 priorityConfigs 来记录,每类优选函数包括 PriorityMapFunctionPriorityReduceFunction 两种函数。优选函数的注册部分可参考 registerAlgorithmProvider

processNode := func(index int) {
	nodeInfo := nodeNameToInfo[nodes[index].Name]
	var err error
	for i := range priorityConfigs {
		if priorityConfigs[i].Function != nil {
			continue
		}
		results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
		if err != nil {
			appendError(err)
			return
		}
	}
}
// 并行执行processNode
workqueue.Parallelize(16, len(nodes), processNode)

priorityConfigs 定义如下:

核心属性:

  • Map :PriorityMapFunction
  • Reduce:PriorityReduceFunction
// PriorityConfig is a config used for a priority function.
type PriorityConfig struct {
	Name   string
	Map    PriorityMapFunction   
	Reduce PriorityReduceFunction
	// TODO: Remove it after migrating all functions to
	// Map-Reduce pattern.
	Function PriorityFunction
	Weight   int
}

具体的优选函数处理逻辑待下文分析,本文会以 NewSelectorSpreadPriority 函数为例。

5. PriorityMapFunction

PriorityMapFunction 是一个计算给定节点的每个节点结果的函数。

PriorityMapFunction 定义如下:

// PriorityMapFunction is a function that computes per-node results for a given node.
// TODO: Figure out the exact API of this method.
// TODO: Change interface{} to a specific type.
type PriorityMapFunction func(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error)

PriorityMapFunction是在 processNode 中调用的,代码如下:

results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)

下文会分析 NewSelectorSpreadPriority 在的map函数 CalculateSpreadPriorityMap

6. PriorityReduceFunction

PriorityReduceFunction 是一个聚合每个节点结果并计算所有节点的最终得分的函数。

PriorityReduceFunction 定义如下:

// PriorityReduceFunction is a function that aggregated per-node results and computes
// final scores for all nodes.
// TODO: Figure out the exact API of this method.
// TODO: Change interface{} to a specific type.
type PriorityReduceFunction func(pod *v1.Pod, meta interface{}, nodeNameToInfo map[string]*schedulercache.NodeInfo, result schedulerapi.HostPriorityList) error

PrioritizeNodes中对reduce函数调用部分如下:

for i, priorityConfig := range priorityConfigs {
	if priorityConfig.Reduce == nil {
		continue
	}
	wg.Add(1)
	go func(index int, config algorithm.PriorityConfig) {
		defer wg.Done()
		if err := config.Reduce(pod, meta, nodeNameToInfo, results[index]); err != nil {
			appendError(err)
		}
		if glog.V(10) {
			for _, hostPriority := range results[index] {
				glog.Infof("%v -> %v: %v, Score: (%d)", pod.Name, hostPriority.Host, config.Name, hostPriority.Score)
			}
		}
	}(i, priorityConfig)
}

下文会分析 NewSelectorSpreadPriority 在的reduce函数 CalculateSpreadPriorityReduce

7. Summarize all scores

先等待计算完成再计算加权平均数。

// Wait for all computations to be finished.
wg.Wait()
if len(errs) != 0 {
	return schedulerapi.HostPriorityList{}, errors.NewAggregate(errs)
}

计算所有节点的加权平均数。

// Summarize all scores.
result := make(schedulerapi.HostPriorityList, 0, len(nodes))

for i := range nodes {
	result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
	for j := range priorityConfigs {
		result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
	}
}

当设置了拓展的计算方式,则增加拓展计算方式的加权平均数。

if len(extenders) != 0 && nodes != nil {
	combinedScores := make(map[string]int, len(nodeNameToInfo))
	for _, extender := range extenders {
		if !extender.IsInterested(pod) {
			continue
		}
		wg.Add(1)
		go func(ext algorithm.SchedulerExtender) {
			defer wg.Done()
			prioritizedList, weight, err := ext.Prioritize(pod, nodes)
			if err != nil {
				// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
				return
			}
			mu.Lock()
			for i := range *prioritizedList {
				host, score := (*prioritizedList)[i].Host, (*prioritizedList)[i].Score
				combinedScores[host] += score * weight
			}
			mu.Unlock()
		}(extender)
	}
	// wait for all go routines to finish
	wg.Wait()
	for i := range result {
		result[i].Score += combinedScores[result[i].Host]
	}
}

8. NewSelectorSpreadPriority

以下以 NewSelectorSpreadPriority 这个优选函数来做分析,其他重要的优选函数待后续专门分析。

NewSelectorSpreadPriority 主要的功能是将属于相同service和rs下的pod尽量分布在不同的node上。

该函数的注册代码如下:

此部分代码位于pkg/scheduler/algorithmprovider/defaults/defaults.go

// ServiceSpreadingPriority is a priority config factory that spreads pods by minimizing
// the number of pods (belonging to the same service) on the same node.
// Register the factory so that it's available, but do not include it as part of the default priorities
// Largely replaced by "SelectorSpreadPriority", but registered for backward compatibility with 1.0
factory.RegisterPriorityConfigFactory(
	"ServiceSpreadingPriority",
	factory.PriorityConfigFactory{
		MapReduceFunction: func(args factory.PluginFactoryArgs) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
			return priorities.NewSelectorSpreadPriority(args.ServiceLister, algorithm.EmptyControllerLister{}, algorithm.EmptyReplicaSetLister{}, algorithm.EmptyStatefulSetLister{})
		},
		Weight: 1,
	},
)

NewSelectorSpreadPriority 的具体实现如下:

此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go

// NewSelectorSpreadPriority creates a SelectorSpread.
func NewSelectorSpreadPriority(
	serviceLister algorithm.ServiceLister,
	controllerLister algorithm.ControllerLister,
	replicaSetLister algorithm.ReplicaSetLister,
	statefulSetLister algorithm.StatefulSetLister) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
	selectorSpread := &SelectorSpread{
		serviceLister:     serviceLister,
		controllerLister:  controllerLister,
		replicaSetLister:  replicaSetLister,
		statefulSetLister: statefulSetLister,
	}
	return selectorSpread.CalculateSpreadPriorityMap, selectorSpread.CalculateSpreadPriorityReduce
}

NewSelectorSpreadPriority 主要包括map和reduce两种函数,分别对应 CalculateSpreadPriorityMapCalculateSpreadPriorityReduce

8.1. CalculateSpreadPriorityMap

CalculateSpreadPriorityMap 的主要作用是将相同service、RC、RS或statefulset的pod分布在不同的节点上。当调度一个pod的时候,先寻找与该pod匹配的service、RS、RC或statefulset,然后寻找与其selector匹配的已存在的pod,寻找存在这类pod最少的节点。

基本流程如下:

  1. 寻找与该pod对应的service、RS、RC、statefulset匹配的selector。
  2. 遍历当前节点的所有pod,将该节点上已存在的selector匹配到的pod的个数作为该节点的分数(此时,分数大的表示匹配到的pod越多,越不符合被调度的条件,该分数在reduce阶段会被按10分制处理成分数大的越符合被调度的条件)。

此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go

// CalculateSpreadPriorityMap spreads pods across hosts, considering pods
// belonging to the same service,RC,RS or StatefulSet.
// When a pod is scheduled, it looks for services, RCs,RSs and StatefulSets that match the pod,
// then finds existing pods that match those selectors.
// It favors nodes that have fewer existing matching pods.
// i.e. it pushes the scheduler towards a node where there's the smallest number of
// pods which match the same service, RC,RSs or StatefulSets selectors as the pod being scheduled.
func (s *SelectorSpread) CalculateSpreadPriorityMap(pod *v1.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
	var selectors []labels.Selector
	node := nodeInfo.Node()
	if node == nil {
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
	}

	priorityMeta, ok := meta.(*priorityMetadata)
	if ok {
		selectors = priorityMeta.podSelectors
	} else {
		selectors = getSelectors(pod, s.serviceLister, s.controllerLister, s.replicaSetLister, s.statefulSetLister)
	}

	if len(selectors) == 0 {
		return schedulerapi.HostPriority{
			Host:  node.Name,
			Score: int(0),
		}, nil
	}

	count := int(0)
	for _, nodePod := range nodeInfo.Pods() {
		if pod.Namespace != nodePod.Namespace {
			continue
		}
		// When we are replacing a failed pod, we often see the previous
		// deleted version while scheduling the replacement.
		// Ignore the previous deleted version for spreading purposes
		// (it can still be considered for resource restrictions etc.)
		if nodePod.DeletionTimestamp != nil {
			glog.V(4).Infof("skipping pending-deleted pod: %s/%s", nodePod.Namespace, nodePod.Name)
			continue
		}
		for _, selector := range selectors {
			if selector.Matches(labels.Set(nodePod.ObjectMeta.Labels)) {
				count++
				break
			}
		}
	}
	return schedulerapi.HostPriority{
		Host:  node.Name,
		Score: int(count),
	}, nil
}

以下分段分析:

先获得selector。

selectors = getSelectors(pod, s.serviceLister, s.controllerLister, s.replicaSetLister, s.statefulSetLister)

计算节点上匹配selector的pod的个数,作为该节点分数,该分数并不是最终节点的分数,只是中间过渡的记录状态。

count := int(0)
for _, nodePod := range nodeInfo.Pods() {
	...
	for _, selector := range selectors {
		if selector.Matches(labels.Set(nodePod.ObjectMeta.Labels)) {
			count++
			break
		}
	}
}

8.2. CalculateSpreadPriorityReduce

CalculateSpreadPriorityReduce 根据节点上现有匹配pod的数量计算每个节点的十分制的分数,具有较少现有匹配pod的节点的分数越高,表示节点越可能被调度到。

基本流程如下:

  1. 记录所有节点中匹配到pod个数最多的节点的分数(即匹配到的pod最多的个数)。
  2. 遍历所有的节点,按比例取十分制的得分,计算方式为:(节点中最多匹配pod的个数-当前节点pod的个数)/节点中最多匹配pod的个数。此时,分数越高表示该节点上匹配到的pod的个数越少,越可能被调度到,即满足把相同selector的pod分散到不同节点的需求。

此部分代码位于pkg/scheduler/algorithm/priorities/selector_spreading.go

// CalculateSpreadPriorityReduce calculates the source of each node
// based on the number of existing matching pods on the node
// where zone information is included on the nodes, it favors nodes
// in zones with fewer existing matching pods.
func (s *SelectorSpread) CalculateSpreadPriorityReduce(pod *v1.Pod, meta interface{}, nodeNameToInfo map[string]*schedulercache.NodeInfo, result schedulerapi.HostPriorityList) error {
	countsByZone := make(map[string]int, 10)
	maxCountByZone := int(0)
	maxCountByNodeName := int(0)

	for i := range result {
		if result[i].Score > maxCountByNodeName {
			maxCountByNodeName = result[i].Score
		}
		zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
		if zoneID == "" {
			continue
		}
		countsByZone[zoneID] += result[i].Score
	}

	for zoneID := range countsByZone {
		if countsByZone[zoneID] > maxCountByZone {
			maxCountByZone = countsByZone[zoneID]
		}
	}

	haveZones := len(countsByZone) != 0

	maxCountByNodeNameFloat64 := float64(maxCountByNodeName)
	maxCountByZoneFloat64 := float64(maxCountByZone)
	MaxPriorityFloat64 := float64(schedulerapi.MaxPriority)

	for i := range result {
		// initializing to the default/max node score of maxPriority
		fScore := MaxPriorityFloat64
		if maxCountByNodeName > 0 {
			fScore = MaxPriorityFloat64 * (float64(maxCountByNodeName-result[i].Score) / maxCountByNodeNameFloat64)
		}
		// If there is zone information present, incorporate it
		if haveZones {
			zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
			if zoneID != "" {
				zoneScore := MaxPriorityFloat64
				if maxCountByZone > 0 {
					zoneScore = MaxPriorityFloat64 * (float64(maxCountByZone-countsByZone[zoneID]) / maxCountByZoneFloat64)
				}
				fScore = (fScore * (1.0 - zoneWeighting)) + (zoneWeighting * zoneScore)
			}
		}
		result[i].Score = int(fScore)
		if glog.V(10) {
			glog.Infof(
				"%v -> %v: SelectorSpreadPriority, Score: (%d)", pod.Name, result[i].Host, int(fScore),
			)
		}
	}
	return nil
}

以下分段分析:

先获取所有节点中匹配到的pod最多的个数。

for i := range result {
	if result[i].Score > maxCountByNodeName {
		maxCountByNodeName = result[i].Score
	}
	zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
	if zoneID == "" {
		continue
	}
	countsByZone[zoneID] += result[i].Score
}

遍历所有的节点,按比例取十分制的得分。

for i := range result {
	// initializing to the default/max node score of maxPriority
	fScore := MaxPriorityFloat64
	if maxCountByNodeName > 0 {
		fScore = MaxPriorityFloat64 * (float64(maxCountByNodeName-result[i].Score) / maxCountByNodeNameFloat64)
	}
  ...
}

9. 总结

优选,从满足的节点中选择出最优的节点。 PrioritizeNodes 最终返回是一个记录了各个节点分数的列表。

9.1. PrioritizeNodes

主要流程如下:

  1. 如果没有设置优选函数和拓展函数,则全部节点设置相同的分数,直接返回。
  2. 依次给node执行map函数进行打分。
  3. 再对上述map函数的执行结果执行reduce函数计算最终得分。
  4. 最后根据不同优先级函数的权重对得分取加权平均数。

其中每类优选函数会包含map函数和reduce函数两种。

9.2. NewSelectorSpreadPriority

其中以 NewSelectorSpreadPriority 这个优选函数为例作分析,该函数的功能是将相同service、RS、RC或statefulset下pod尽量分散到不同的节点上。包括map函数和reduce函数两部分,具体如下。

9.2.1. CalculateSpreadPriorityMap

基本流程如下:

  1. 寻找与该pod对应的service、RS、RC、statefulset匹配的selector。
  2. 遍历当前节点的所有pod,将该节点上已存在的selector匹配到的pod的个数作为该节点的分数(此时,分数大的表示匹配到的pod越多,越不符合被调度的条件,该分数在reduce阶段会被按10分制处理成分数大的越符合被调度的条件)。

9.2.2. CalculateSpreadPriorityReduce

基本流程如下:

  1. 记录所有节点中匹配到pod个数最多的节点的分数(即匹配到的pod最多的个数)。
  2. 遍历所有的节点,按比例取十分制的得分,计算方式为:(节点中最多匹配pod的个数-当前节点pod的个数)/节点中最多匹配pod的个数。此时,分数越高表示该节点上匹配到的pod的个数越少,越可能被调度到,即满足把相同selector的pod分散到不同节点的需求。

参考:


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Python标准库

Python标准库

Doug Hellmann / 刘炽 / 机械工业出版社华章公司 / 2012-6-15 / 139.00元

本书由资深Python专家亲自执笔,Python语言的核心开发人员作序推荐,权威性毋庸置疑。 对于程序员而言,标准库与语言本身同样重要,它好比一个百宝箱,能为各种常见的任务提供完美的解决方案,所以本书是所有Python程序员都必备的工具书!本书以案例驱动的方式讲解了标准库中一百多个模块的使用方法(如何工作)和工作原理(为什么要这样工作),比标准库的官方文档更容易理解(一个简单的示例比一份手册......一起来看看 《Python标准库》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码