吴恩达机器学习系列17:支持向量机

栏目: 编程工具 · 发布时间: 5年前

内容简介:在逻辑回归中,假设函数 h_θ(x) 为:

支持向量机( Support vector machine 是一种强大的机器学习算法,和神经网络相比,它在学习复杂的非线性方程时,能够提供更清晰和更加强大的方式。为了学习支持向量机,我们可以先从逻辑回归开始,看看如何经过小小的改动能得到支持向量机。

在逻辑回归中,假设函数 h_θ(x) 为:

吴恩达机器学习系列17:支持向量机

图像为:

吴恩达机器学习系列17:支持向量机

对于一个样本来说,代价函数为:

吴恩达机器学习系列17:支持向量机

当 y =1 时,第二项为 0,只需要考虑第一项,画出第一项的图像:

吴恩达机器学习系列17:支持向量机

我们把这个图像稍微修改一下,趋势与逻辑回归相似,就变成了支持向量机代价函数一部分的图像 cost_1(z),如下图粉色线: 吴恩达机器学习系列17:支持向量机

第二项同样道理,cost_0(z):

吴恩达机器学习系列17:支持向量机

逻辑回归中正则化代价函数为:

吴恩达机器学习系列17:支持向量机

将其中系数 1/m 去掉,把红色部分换成上面粉色图像的函数:

吴恩达机器学习系列17:支持向量机

接着将浅蓝色和粉色部分调换一下权重:

吴恩达机器学习系列17:支持向量机

这样就得到支持向量机的代价函数:

吴恩达机器学习系列17:支持向量机

只需要将这个函数最小化即可得到参数。以上就是从逻辑回归推出支持向量机的整个过程。

ps. 本篇文章是根据吴恩达机器学习课程整理的学习笔记。如果想要一起学习机器学习,可以关注微信公众号「 SuperFeng 」,期待与你的相遇。

吴恩达机器学习系列17:支持向量机


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

腾讯之道

腾讯之道

艾永亮、刘官华、梁璐 / 机械工业出版社 / 2016-7-19 / 59

放眼整个中国乃至全球,腾讯都是一家成功的互联网企业,它代表中国企业在世界互联网版图中竖起了一面高高的旗帜。腾讯为何能取得如此大的成就,它的成功方法和商业逻辑是什么?你是不是和无数中国企业和商界人士一样,都想向腾讯取取经,但是又不得其门而入? 腾讯一直以低调、务实著称,所 以腾讯及其内部员工都极少对外界分享他们的经验;加之腾讯的商业模式多元、业务繁多且交叉、体量又极其庞大,使得从外部来系统研究......一起来看看 《腾讯之道》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具