吴恩达机器学习系列17:支持向量机

栏目: 编程工具 · 发布时间: 5年前

内容简介:在逻辑回归中,假设函数 h_θ(x) 为:

支持向量机( Support vector machine 是一种强大的机器学习算法,和神经网络相比,它在学习复杂的非线性方程时,能够提供更清晰和更加强大的方式。为了学习支持向量机,我们可以先从逻辑回归开始,看看如何经过小小的改动能得到支持向量机。

在逻辑回归中,假设函数 h_θ(x) 为:

吴恩达机器学习系列17:支持向量机

图像为:

吴恩达机器学习系列17:支持向量机

对于一个样本来说,代价函数为:

吴恩达机器学习系列17:支持向量机

当 y =1 时,第二项为 0,只需要考虑第一项,画出第一项的图像:

吴恩达机器学习系列17:支持向量机

我们把这个图像稍微修改一下,趋势与逻辑回归相似,就变成了支持向量机代价函数一部分的图像 cost_1(z),如下图粉色线: 吴恩达机器学习系列17:支持向量机

第二项同样道理,cost_0(z):

吴恩达机器学习系列17:支持向量机

逻辑回归中正则化代价函数为:

吴恩达机器学习系列17:支持向量机

将其中系数 1/m 去掉,把红色部分换成上面粉色图像的函数:

吴恩达机器学习系列17:支持向量机

接着将浅蓝色和粉色部分调换一下权重:

吴恩达机器学习系列17:支持向量机

这样就得到支持向量机的代价函数:

吴恩达机器学习系列17:支持向量机

只需要将这个函数最小化即可得到参数。以上就是从逻辑回归推出支持向量机的整个过程。

ps. 本篇文章是根据吴恩达机器学习课程整理的学习笔记。如果想要一起学习机器学习,可以关注微信公众号「 SuperFeng 」,期待与你的相遇。

吴恩达机器学习系列17:支持向量机


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Zero to One

Zero to One

Peter Thiel、Blake Masters / Crown Business / 2014-9-16 / USD 27.00

“This book delivers completely new and refreshing ideas on how to create value in the world.” - Mark Zuckerberg, CEO of Facebook “Peter Thiel has built multiple breakthrough companies, and ......一起来看看 《Zero to One》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具