Python 60行代码使用 OpenCV 识别雪深

栏目: 编程工具 · 发布时间: 5年前

内容简介:前两天跟一个朋友吃饭,聊到他在做的图像识别测量雪深,对此深感兴趣,找时间就把 OpenCV 了解一下。识别标杆上红色刻度的数量。研究了一下午,话不多说,直接开始演示吧。

前两天跟一个朋友吃饭,聊到他在做的图像识别测量雪深,对此深感兴趣,找时间就把 OpenCV 了解一下。

识别标杆上红色刻度的数量。

研究了一下午,话不多说,直接开始演示吧。

import cv2
# 读取图片
img = cv2.imread("./snow.jpeg")

首先,将红色部分提取,则需要将原图进行颜色空间转换,转换类型使用 BGR2HSV 方法。

HSV 是一种将RGB色彩模型中的点在圆柱坐标系中的表示法。H 为色相,是色彩的基本属性,S 为饱和度,V 为明度。

从网上查了下,红色区域的 H 值在 [0,10] 和 [170,180],使用 inRange 方法将红色范围内外的颜色区分开

hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask1 = cv2.inRange(hsv_img, np.array([0, 70, 50]), np.array([10, 255, 255]))
mask2 = cv2.inRange(hsv_img, np.array([170, 70, 50]), np.array([180, 255, 255]))
mask = mask1 | mask2

mask 显示效果如下

Python 60行代码使用 OpenCV 识别雪深

此时,图像上除了刻度外,还有些地方呈现白色,需要将这些杂质过滤掉,同时也要将垂直部分的白色去掉,需要经过先膨胀再腐蚀再膨胀三个过程。为什么要这样呢?因为这样才能过滤掉杂质以及垂直方向的红线部分,以致达到效果,具体看下面的代码和图。

dilated = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)), iterations=2)
# 创建一个水平的结构元素,进行腐蚀和膨胀
hline = cv2.getStructuringElement(cv2.MORPH_RECT, (int(dilated.shape[1] / 32), 1), (-1, -1))
# 腐蚀掉多余的白色部分
temp = cv2.erode(dilated, hline)
# 使白色部分膨胀
dst_img = cv2.dilate(temp, hline)

效果如下:

Python 60行代码使用 OpenCV 识别雪深

得到提取后的部分,发现还有一个问题,左右刻度有些连结在了一起,此时需要分割。分割的方式是先计算一下宽度,得出中点宽度值,在此原图对应的中点宽度画一条黑线(不过效率有点低啊:blush:

def get_mid_width(mask):
    """
    获取白色轮廓区域的中间宽度
    """
    min_width = mask.shape[1]
    max_width = 0
    for line in mask:
        """
        处理图片为白色轮廓区域,计算轮廓区域宽度的中间值
        """
        indexes = list(filter(lambda i: line[i] != 0, range(len(line))))
        if len(indexes) != 0:
            if min_width > indexes[0]:
                min_width = indexes[0]
            if max_width < indexes[-1]:
                max_width = indexes[-1]
        else:
            continue
    mid_width = int((min_width + max_width) / 2)
    return mid_width

mid_width = get_mid_width(dst_img)
# 在图片上画一条黑线,用来分割左右红线区域,避免膨胀的时候连在一起
cv2.line(img, (mid_width, 0), (mid_width, img.shape[0]), (0, 0, 0), 20)

得到如下图:

Python 60行代码使用 OpenCV 识别雪深

然后重复上面的提取红色部分并过滤的步骤,得到如下图:

Python 60行代码使用 OpenCV 识别雪深

此时已经完成90%了,剩下的就是获取每个轮廓,以及把轮廓在原图上描绘出来

contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 获取轮廓
# 画上所有轮廓
cv2.drawContours(img_source, contours, -1, (0, 0, 0), 3)
imS = cv2.resize(img_source, (540, 960))
cv2.imshow('result', imS)
cv2.waitKey(0)
cv2.destroyAllWindows()

最终效果

Python 60行代码使用 OpenCV 识别雪深

是不是很简单呢?!整理完才60行代码,不过这只是简单的实现,一旦涉及到有比较大的杂质或者标杆倾斜以及其他情况,都会影响识别率。


以上所述就是小编给大家介绍的《Python 60行代码使用 OpenCV 识别雪深》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

游戏编程模式

游戏编程模式

Robert Nystrom / GPP翻组 / 人民邮电出版社 / 2016-9-1 / 61.4

游戏开发一直是热门的领域,掌握良好的游戏编程模式是开发人员的应备技能。本书细致地讲解了游戏开发需要用到的各种编程模式,并提供了丰富的示例。 全书共分20章,通过三大部分内容全面介绍了与游戏编程模式相关的各类知识点。首部分介绍了基础知识和框架;第二部分深入探索设计模式,并介绍了模式与游戏开发之间的关联;第三部分介绍了13种有效的游戏设计模式。 本书提供了丰富的代码示例,通过理论和代码示例......一起来看看 《游戏编程模式》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具