Kafka使用jmxtrans+influxdb+grafana监控JMX指标

栏目: 服务器 · 发布时间: 5年前

内容简介:最近在搞Kafka集群监控,之前也是看了网上的很多资料。之所以使用jmxtrans+influxdb+grafana是因为界面酷炫,可以定制化,缺点是不能操作Kafka集群,可能需要配合Kafka Manager一起使用。环境信息CentOS Linux release 7.6.1810 (Core)

最近在搞Kafka集群监控,之前也是看了网上的很多资料。之所以使用jmxtrans+influxdb+grafana是因为界面酷炫,可以定制化,缺点是不能操作Kafka集群,可能需要配合Kafka Manager一起使用。

环境信息

CentOS Linux release 7.6.1810 (Core)

jdk1.8.0_201

zookeeper-3.4.14

kafka_2.11-2.2.0

开启Kafka JMX端口

JMX(Java Management Extensions,即 Java 管理扩展)是一个为应用程序、设备、系统等植入管理功能的框架。JMX可以跨越一系列异构操作系统平台、系统体系结构和网络传输协议,灵活的开发无缝集成的系统、网络和服务管理应用。Kafka做为一款Java应用,已经定义了丰富的性能指标,(可以参考Kafka监控指标),通过JMX可以轻松对其进行监控。

在${KAFKA_HOME}/bin/路径下修改kafka-run-class.sh脚本,第一行增加JMX_PORT=9999即可。

JMX_PORT=9999

重启Kafka

./bin/kafka-server-stop.sh

./bin/kafka-server-start.sh -daemon ./config/server.properties

重启后查看Kafka以及JMX端口状态

ps -ef | grep kafka

root      8273      1 99 02:32 pts/0    00:00:09 /opt/jdk1.8.0_201/bin/java -Xmx1G -Xms1G -server -XX:+UseG1GC -XX:MaxGCPauseMillis=20 ......  kafka.Kafka ./config/server.properties

netstat -anop | grep 9999

tcp6      0      0 :::9999                :::*                    LISTEN      8273/java            off (0.00/0/0)

安装InfluxDB

InfluxDB是一个时间序列数据库,用于处理海量写入与负载查询。InfluxDB旨在用作涉及大量时间戳数据的任何用例(包括DevOps监控,应用程序指标,物联网传感器数据和实时分析)的后端存储。

下载InfluxDB rpm安装包

wget https://dl.influxdata.com/influxdb/releases/influxdb-1.7.5.x86_64.rpm

--2019-04-10 02:52:30--  https://dl.influxdata.com/influxdb/releases/influxdb-1.7.5.x86_64.rpm

Resolving dl.influxdata.com (dl.influxdata.com)... 54.192.151.21, 54.192.151.81, 54.192.151.87, ...

Connecting to dl.influxdata.com (dl.influxdata.com)|54.192.151.21|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 46536692 (44M) [application/octet-stream]

Saving to: ‘influxdb-1.7.5.x86_64.rpm’

100%[================================================================================================================================================================================>] 46,536,692  440KB/s  in 60s

2019-04-10 02:53:37 (756 KB/s) - ‘influxdb-1.7.5.x86_64.rpm’ saved [46536692/46536692]

安装rpm包

rpm -ivh influxdb-1.7.5.x86_64.rpm

Preparing...                          ################################# [100%]

Updating / installing...

1:influxdb-1.7.5-1                ################################# [100%]

Created symlink from /etc/systemd/system/influxd.service to /usr/lib/systemd/system/influxdb.service.

Created symlink from /etc/systemd/system/multi-user.target.wants/influxdb.service to /usr/lib/systemd/system/influxdb.service.

启动InfluxDB

service influxdb start

Redirecting to /bin/systemctl start influxdb.service

查看InfluxDB状态

ps -ef | grep influxdb

influxdb  8475      1  2 03:01 ?        00:00:00 /usr/bin/influxd -config /etc/influxdb/influxdb.conf

root      8486  7007  0 03:02 pts/0    00:00:00 grep --color=auto influxdb

service influxdb status

Redirecting to /bin/systemctl status influxdb.service

● influxdb.service - InfluxDB is an open-source, distributed, time series database

Loaded: loaded (/usr/lib/systemd/system/influxdb.service; enabled; vendor preset: disabled)

Active: active (running) since Wed 2019-04-10 03:01:48 EDT; 22s ago

Docs: https://docs.influxdata.com/influxdb/

Main PID: 8475 (influxd)

CGroup: /system.slice/influxdb.service

└─8475 /usr/bin/influxd -config /etc/influxdb/influxdb.conf

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375804Z lvl=info msg="Starting precreation service" log_id=0EiWgWRl000 service=shard-precreation check_interval=10m advance_period=30m

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375810Z lvl=info msg="Starting snapshot service" log_id=0EiWgWRl000 service=snapshot

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375816Z lvl=info msg="Starting continuous query service" log_id=0EiWgWRl000 service=continuous_querier

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375826Z lvl=info msg="Starting HTTP service" log_id=0EiWgWRl000 service=httpd authentication=false

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375830Z lvl=info msg="opened HTTP access log" log_id=0EiWgWRl000 service=httpd path=stderr

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375936Z lvl=info msg="Listening on HTTP" log_id=0EiWgWRl000 service=httpd addr=[::]:8086 https=false

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.375949Z lvl=info msg="Starting retention policy enforcement service" log_id=0EiWgWRl000 service=retention check_interval=30m

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.376138Z lvl=info msg="Listening for signals" log_id=0EiWgWRl000

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.376389Z lvl=info msg="Storing statistics" log_id=0EiWgWRl000 service=monitor db_instance=_internal db_rp=monitor interval=10s

Apr 10 03:01:48 node1 influxd[8475]: ts=2019-04-10T07:01:48.376534Z lvl=info msg="Sending usage statistics to usage.influxdata.com" log_id=0EiWgWRl000

使用InfluxDB客户端

influx

Connected to http://localhost:8086 version 1.7.5

InfluxDB shell version: 1.7.5

Enter an InfluxQL query

>

创建用户和数据库

> CREATE USER "admin" WITH PASSWORD 'admin' WITH ALL PRIVILEGES

> create database "jmxDB"

创建完成InfluxDB的用户和数据库暂时就够用了,其它简单操作如下,后面会用到

#创建数据库

create database "db_name"

#显示所有的数据库

show databases

#删除数据库

drop database "db_name"

#使用数据库

use db_name

#显示该数据库中所有的表

show measurements

#创建表,直接在插入数据的时候指定表名

insert test,host=127.0.0.1,monitor_name=test count=1

#删除表

drop measurement "measurement_name"

#退出

quit

安装jmxtrans

jmxtrans的作用是自动去jvm中获取所有jmx格式数据,并按照某种格式(json文件配置格式)输出到其他应用程序(本例中的influxDB)。

下载jmxtrans rpm安装包

wget http://central.maven.org/maven2/org/jmxtrans/jmxtrans/270/jmxtrans-270.rpm

--2019-04-10 03:18:14--  http://central.maven.org/maven2/org/jmxtrans/jmxtrans/270/jmxtrans-270.rpm

Resolving central.maven.org (central.maven.org)... 151.101.40.209

Connecting to central.maven.org (central.maven.org)|151.101.40.209|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 18750744 (18M) [application/x-rpm]

Saving to: ‘jmxtrans-270.rpm’

100%[================================================================================================================================================================================>] 18,750,744 342KB/s in 43s

2019-04-10 03:18:59 (422 KB/s) - ‘jmxtrans-270.rpm’ saved [18750744/18750744]

安装rpm包

rpm -ivh jmxtrans-270.rpm

Preparing... ################################# [100%]

Updating / installing...

1:jmxtrans-270-1 ################################# [100%]

jmxtrans相关路径

jmxtrans安装目录:/usr/share/jmxtrans

json文件默认目录:/var/lib/jmxtrans/

日志路径:/var/log/jmxtrans/jmxtrans.log

配置json,jmxtrans的github上有一段示例配置

{

"servers" : [ {

"port" : "1099",

"host" : "w2",

"queries" : [ {

"obj" : "java.lang:type=Memory",

"attr" : [ "HeapMemoryUsage", "NonHeapMemoryUsage" ],

"resultAlias":"jvmMemory",

"outputWriters" : [ {

"@class" : "com.googlecode.jmxtrans.model.output.InfluxDbWriterFactory",

"url" : "http://127.0.0.1:8086/",

"username" : "admin",

"password" : "admin",

"database" : "jmxDB",

"tags"    : {"application" : "kafka"}

} ]

} ]

} ]

}

host:监控服务器

port:jmx端口

obj:对应jmx的ObjectName,就是我们要监控的指标

attr:对应ObjectName的属性,可以理解为我们要监控的指标的值

resultAlias:对应metric 的名称,在InfluxDB里面就是MEASUREMENTS名

tags:对应InfluxDB的tag功能,对与存储在同一个MEASUREMENTS里面的不同监控指标可以做区分,我们在用Grafana绘图的时候会用到,建议对每个监控指标都打上tags

启动jmxtrans

service jmxtrans start

Starting JmxTrans...

查看日志没有报错即为成功

tail /var/log/jmxtrans/jmxtrans.log

INFO  | jvm 1    | 2019/04/10 04:44:31 |  Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads.

INFO  | jvm 1    | 2019/04/10 04:44:31 |  Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered.

INFO  | jvm 1    | 2019/04/10 04:44:31 |

INFO  | jvm 1    | 2019/04/10 04:44:31 | 2019-04-10 04:44:31 [WrapperSimpleAppMain] INFO  org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'ServerScheduler' initialized from an externally opened InputStream.

INFO  | jvm 1    | 2019/04/10 04:44:31 | 2019-04-10 04:44:31 [WrapperSimpleAppMain] INFO  org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 1.8.6

INFO  | jvm 1    | 2019/04/10 04:44:31 | 2019-04-10 04:44:31 [WrapperSimpleAppMain] INFO  org.quartz.core.QuartzScheduler - JobFactory set to: com.googlecode.jmxtrans.guice.GuiceJobFactory@23822296

2019-04-10 04:44:31 [WrapperSimpleAppMain] level com.googlecode.jmxtrans.JmxTransformer [JmxTransformer.java:177] - Starting Jmxtrans on : /var/lib/jmxtrans

2019-04-10 04:44:31 [WrapperSimpleAppMain] level org.quartz.core.QuartzScheduler [QuartzScheduler.java:519] - Scheduler ServerScheduler_$_node11554885871753 started.

INFO  | jvm 1    | 2019/04/10 04:44:31 | 2019-04-10 04:44:31 [WrapperSimpleAppMain] INFO  c.googlecode.jmxtrans.JmxTransformer - Starting Jmxtrans on : /var/lib/jmxtrans

INFO  | jvm 1    | 2019/04/10 04:44:31 | 2019-04-10 04:44:31 [WrapperSimpleAppMain] INFO  org.quartz.core.QuartzScheduler - Scheduler ServerScheduler_$_node11554885871753 started.

附上两段通用的json文件

base_127.0.0.1.json

View Code

topicA_1.json

View Code

安装Grafana

Grafana是一个跨平台的开源的度量分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知。

下载jmxtrans rpm安装包

wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-6.0.2-1.x86_64.rpm

--2019-04-10 04:53:15--  https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-6.0.2-1.x86_64.rpm

Resolving s3-us-west-2.amazonaws.com (s3-us-west-2.amazonaws.com)... 52.218.144.92

Connecting to s3-us-west-2.amazonaws.com (s3-us-west-2.amazonaws.com)|52.218.144.92|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 56002012 (53M) [application/x-RedHat-package-manager]

Saving to: ‘grafana-6.0.2-1.x86_64.rpm’

100%[================================================================================================================================================================================>] 56,002,012 177KB/s in 2m 52s

2019-04-10 04:56:08 (318 KB/s) - ‘grafana-6.0.2-1.x86_64.rpm’ saved [56002012/56002012]

安装rpm包

rpm -ivh grafana-6.0.2-1.x86_64.rpm

warning: grafana-6.0.2-1.x86_64.rpm: Header V4 RSA/SHA1 Signature, key ID 24098cb6: NOKEY

error: Failed dependencies:

fontconfig is needed by grafana-6.0.2-1.x86_64

urw-fonts is needed by grafana-6.0.2-1.x86_64

缺少依赖,下载依赖

yum install --downloadonly --downloaddir=./ fontconfig

yum localinstall fontconfig-2.13.0-4.3.el7.x86_64.rpm

yum install --downloadonly --downloaddir=./ urw-fonts

yum localinstall urw-fonts-2.4-16.el7.noarch.rpm

rpm -ivh grafana-6.0.2-1.x86_64.rpm

warning: grafana-6.0.2-1.x86_64.rpm: Header V4 RSA/SHA1 Signature, key ID 24098cb6: NOKEY

Preparing...                          ################################# [100%]

Updating / installing...

1:grafana-6.0.2-1                  ################################# [100%]

### NOT starting on installation, please execute the following statements to configure grafana to start automatically using systemd

sudo /bin/systemctl daemon-reload

sudo /bin/systemctl enable grafana-server.service

### You can start grafana-server by executing

sudo /bin/systemctl start grafana-server.service

POSTTRANS: Running script

启动Grafana

service grafana-server start

Starting grafana-server (via systemctl):                  [  OK  ]

打开浏览器

http://127.0.0.1:3000

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

先输入默认用户名密码admin/admin

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

设置新密码

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

点击Add data source

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

选择InfluxDB

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

输入连接信息后点击Save & Test

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

通过后点击Back返回

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

左侧 + 可以创建或引入仪表盘

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

类似于数据库 SQL 语句,查询相应的指标

Kafka使用jmxtrans+influxdb+grafana监控JMX指标

计算平均每秒数值可以使用如上语法,用当前值减1分钟之前的值再除以60

具体展示效果就看各位的审美能力,这里就不贴出来了。至此,Kafka的JMX指标监控就完成了。

Linux公社的RSS地址https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-04/158037.htm


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

颠覆式成长

颠覆式成长

惠特尼•约翰逊 / 张瀚文 / 中信出版集团 / 2018-8 / 49.00

你可能想要标新立异、挑战自我,甚至抛弃安逸的事业; 你可能会从目前的行业或公司中跳槽,进入一个完全陌生的崭新领域, 这本书会让你认识到颠覆式成长的意义所在。 成功没有捷径,颠覆也会令人心生惧意,但是在职业发展与个人成长上的回报,会让你克服这种恐惧,让你不断尝试、不断精进。 S型曲线精进模型将帮助你预测自己创新的成长周期,洞悉颠覆自我过程中的心路历程,在变革与颠覆中从容应对,......一起来看看 《颠覆式成长》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换