用cAdvisor InfluxDB Grafana监控docker容器的TcpState

栏目: 服务器 · 发布时间: 5年前

内容简介:搭建完cAdvisor InfluxDB Grafana监控集群后, 发现没有tcp相关的数据.

问题

搭建完cAdvisor InfluxDB Grafana监控集群后, 发现没有tcp相关的数据.

用cAdvisor InfluxDB Grafana监控 <a href='https://www.codercto.com/topics/20577.html'>docker</a> 容器的TcpState

源码版本:

https://github.com/google/cad...

git commit hash:9db8c7dee20a0c41627b208977ab192a0411bf93

搭建cAdvisor InfluxDB Grafana参考

https://botleg.com/stories/mo...

定位过程

是否cadvisor没有记录tcp state?

容易搜索到, 因为cadvisor的高cpu占用, 需要--disable_metrics=""

https://github.com/google/cad...

实际上并非如此.

不带任何参数情况下, 本地启动cadvisor.

~/gopath/src/github.com/google/cadvisor(master*) » sudo ./cadvisor -logtostderr

在浏览器中打开 http://127.0.0.1 :8080/containers/ 可以看到response中, 带有TcpState.

用cAdvisor InfluxDB Grafana监控docker容器的TcpState

是否写入了influxdb?

  1. 打开influx db shell
InfluxDB shell 0.9.6.1
> show databases
name: databases
---------------
name
_internal
mydb
cadvisor
> use cadvisor
Using database cadvisor
> show tag keys
name: cpu_usage_system
----------------------
tagKey
container_name
machine

可以看到, 这些tagKey对应grafana中的select column.

那么, 是否cadvisor没有写入influxdb呢?

cadvisor/storage/influxdb/influxdb.go:174

func (self *influxdbStorage) containerStatsToPoints(
    cInfo *info.ContainerInfo,
    stats *info.ContainerStats,
) (points []*influxdb.Point) {
    // CPU usage: Total usage in nanoseconds
    points = append(points, makePoint(serCpuUsageTotal, stats.Cpu.Usage.Total))

    // CPU usage: Time spend in system space (in nanoseconds)
    points = append(points, makePoint(serCpuUsageSystem, stats.Cpu.Usage.System))

    // CPU usage: Time spent in user space (in nanoseconds)
    points = append(points, makePoint(serCpuUsageUser, stats.Cpu.Usage.User))

    // CPU usage per CPU
    for i := 0; i < len(stats.Cpu.Usage.PerCpu); i++ {
        point := makePoint(serCpuUsagePerCpu, stats.Cpu.Usage.PerCpu[i])
        tags := map[string]string{"instance": fmt.Sprintf("%v", i)}
        addTagsToPoint(point, tags)

        points = append(points, point)
    }

    // Load Average
    points = append(points, makePoint(serLoadAverage, stats.Cpu.LoadAverage))

    // Memory Usage
    points = append(points, makePoint(serMemoryUsage, stats.Memory.Usage))

    // Working Set Size
    points = append(points, makePoint(serMemoryWorkingSet, stats.Memory.WorkingSet))

    // Network Stats
    points = append(points, makePoint(serRxBytes, stats.Network.RxBytes))
    points = append(points, makePoint(serRxErrors, stats.Network.RxErrors))
    points = append(points, makePoint(serTxBytes, stats.Network.TxBytes))
    points = append(points, makePoint(serTxErrors, stats.Network.TxErrors))

    self.tagPoints(cInfo, stats, points)

    return points
}

结论

需要修改cadvisor代码, 将自己需要的metrics加上.


以上所述就是小编给大家介绍的《用cAdvisor InfluxDB Grafana监控docker容器的TcpState》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Node.js in Action

Node.js in Action

Mike Cantelon、Marc Harter、TJ Holowaychuk、Nathan Rajlich / Manning Publications / 2013-11-25 / USD 44.99

* Simplifies web application development * Outlines valuable online resources * Teaches Node.js from the ground up Node.js is an elegant server-side JavaScript development environment perfect for scal......一起来看看 《Node.js in Action》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换